
Programming
“Arduino”
Sketches

Digital Inputs/Outputs
Instructor / Facilitator - Alan Rux

1

“Platform”

 Digital I /O Pins

• D0 to D13 = 14 pins

• “O” = O v., “1” = +5v.

• Six pins = PWM output

 D3,D5,D6,D9,D10,D11

• I/O pin 0 = RX, I/O pin=TX

 (serial com, port)

• I/O current limited

 (see next slide)

Digital I /O Pins output current limits

• 40 ma. Max current / pin

• 200 ma. Max for IC
 (all pins total)

• < 10ma. Recommended
• Use 560 ohm resistor to 1k ohm
 resistor for current limiter
• Output Z very low ohms

Digital I /O Pins Inputs

• When a pin is configured as an INPUT with pinMode, and read
with digitalRead, the microcontroller will report HIGH if a
voltage of 3 volts or more is present at the pin

• The microcontroller will report LOW if a voltage of 2 volts or
less is present at the pin

• Arduino pins configured as INPUT with pinMode() are said to
be in a high-impedance state. Pins configured as INPUT make
extremely small demands on the circuit that they are sampling,
equivalent to a series resistor of 100 Megohms in front of the
pin. This makes them useful for reading a sensor, but not
powering an LED.

• Often it is useful to steer an input pin to a known state if no
input is present. This can be done by adding a pullup resistor
(to +5V), or a pulldown resistor (resistor to ground) on the
input. A 10K resistor is a good value for a pullup or pulldown
resistor

Digital I /O Pins Outputs

• Pins configured as OUTPUT with pinMode() are said to be in a low-
impedance state. This means that they can provide a substantial
amount of current to other circuits. Atmega pins can source
(provide positive current) or sink (provide negative current) up to
40 mA (milliamps) of current to other devices/circuits. This is
enough current to brightly light up an LED (don't forget the series
resistor), or run many sensors, for example, but not enough current
to run most relays, solenoids, or motors

• Short circuits on Arduino pins, or attempting to run high current

devices from them, can damage or destroy the output transistors
in the pin, or damage the entire Atmega chip. Often this will result
in a "dead" pin in the microcontroller but the remaining chip will
still function adequately.

• For this reason it is a good idea to connect OUTPUT pins to other

devices with 470Ω to 1k series resistor.

Digital Inputs - Pull Up / Down
• Simple circuit Push Button

• Note 100 ohm resistor, this prevents you from burning out the
I/O pin, if by mistake, it is programmed as an output and
connected to +5 volts or ground, 0 volts. The 100Ω resistor
acts as a buffer, to protect the pin from short circuits

• When circuit is in open position the input I/O pin can float and
give unreliable readings, High or Low (see next slide)

Digital Inputs - Pull-Up Circuit

• By adding a 10 K ohm
resistor the input pin is
in the high input signal
position until the Push
Button is pressed and
shorts the input to
ground, a digital low
signal

• This is called an “active
low” input

Digital Inputs - Pull-Down Circuit

• By adding a 10 K ohm
resistor the input pin is
in the low input signal
position until the Push
Button is pressed and
connects the input to + 5
volts, a digital high signal

• This is called an “active
high” input

Pushbutton Switches
• Pushbutton switches are two-position devices

actuated with a button that is pressed and released.
Most pushbutton switches have an internal spring
mechanism returning the button to its "out," or
"unpressed," position, for momentary operation.

Normally Open PushButton switch

Pushbutton Switch
Digital I/O Input Circuit

• Active when High digital input

Gnd, 0 volts Gnd, 0 volts

Push Button test program (1 of 2 pages)

(red is comments statement)

// Pushbutton program reports when a button is pushed and released

// Constant integer used to set pin numbers >
const int buttonPin = 12; // the number of the pushbutton pin

// variables
//(Variables may change while the program runs)
int buttonState = 0; // variable the pushbutton status

void setup() {
 // initialize Serial communications
 Serial.begin(9600);

 // set the buttonPin mode to INPUT
 pinMode(buttonPin, INPUT);
}

Push Button test program (2of 2 pages)

(red is comments statement)

void loop(){

 // get the state of the pushbutton
 buttonState = digitalRead(buttonPin);

 // is the button pressed?
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // Tell the world
 Serial.println("Button pushed.");
 }
 else {
 Serial.println("Button not pushed.");
 }

 delay(500); // pause for 1/2 a second
}

if (buttonState == HIGH)

 if, which is used in conjunction with a comparison
operator, tests whether a certain condition has
been reached, such as an input being above a
certain number. The format for an if test is:

• if (someVariable ==HIGH) { // do something here }

• == , use the double equal sign

 (e.g. if (buttonState == HIGH)), which is the
comparison operator, and tests whether
xbuttonState is equal to digital HIGH or not.

some comparison operators

Serial.println("Button pushed.");
• You can use the Arduino environment's built-

in serial monitor to communicate with an
Arduino board. Click the serial monitor button
in the toolbar and select the same baud rate
used in the call to begin().

• println(val) Prints data to the serial port as
human-readable ASCII text followed by a
carriage return character

• println(val) val: the value to print - any data
type . ("Button pushed.")

else {
 Serial.println("Button not pushed.");

• Else if/else allows greater control over the

flow of code than the basic if statement, by
allowing multiple tests to be grouped together

• In the case that the input is not HIGH the else
comparison statement prints “Button not
pushed” on the serial IDE monitor.

• We have a 500 ms delay and loop back to if
again, repeat over and over.

Push Button test program

We will use the serial monitor on the
Arduino IDE

Push Button test program

We will use the serial monitor on the
Arduino IDE to show status of input pin

Push Button Schematic

• I/O pin 12 is used as a
digital input

• Add 220 ohm resistor
between pin 12 and 10k
ohm pull down resistor and
push button switch

• Read switch status as
pressing switch,

Another Push Button test program
(red is comments statement)

/*
* Switch test program
*/

int switchPin =12; // Switch connected to digital pin 12

void setup() // run once, when the sketch starts

{

 Serial.begin(9600); // set up Serial library at 9600 bps

 pinMode(switchPin, INPUT); // sets the digital pin as input to read switch

}

 void loop() // run over and over again

{

 Serial.print ("Read switch input: ");

Serial.println(digitalRead(switchPin)); // Read the pin and display the value

delay(100);

}

combine inputs (buttons) and outputs (LEDs)

 Sketch
Verify that when the button is pressed, the LED turns on and when the

button is released, the LED turns off. (1 of 2 pages)

/*

 * Switch and LED test program

*/

int ledPin = 10; // LED is connected to pin 11

int switchPin = 12; // switch is connected to pin 12

int val; // variable for reading the pin status

 void setup() {

pinMode(ledPin, OUTPUT); // Set the LED pin as output

pinMode(switchPin, INPUT); // Set the switch pin as input

}

combine inputs (buttons) and outputs (LEDs)

 Sketch
Verify that when the button is pressed, the LED turns on and when the button

is released, the LED turns off. (2 of 2 pages)

void loop(){

 val = digitalRead(switchPin); // read input value and store it in val

 if (val == LOW) { // check if the button is pressed

 digitalWrite(ledPin, HIGH); // turn LED on

 }

 if (val == HIGH) { // check if the button is not pressed

 digitalWrite(ledPin, LOW); // turn LED off

 }

}

Schematic

LED is connected to pin 11

switch is connected to pin 12

Switch Contact Bounce
• You spend some time looking over your code but can't seem to find

the problem.
• Turns out this is not a software (sketch) problem, but actually a

mechanical problem.
• Inside the little tactile switch is a small disc spring. When you push

the button you squeeze the spring so that it makes contact with the
two wire connections. When you release, the spring bounces back.
This works great except that, the spring is springy. And that means
that once in a while, when you press the button it bounces around
a little in the switch, making and breaking contact a few times
before settling

• This “bounce” can be interpreted as many switch presses,
 causing the microcontroller to think the switch has been presses a

few times and operates as if that is true causing miss interpretation
and unwanted results

Switch Contact Bounce scope trace

Switch Debounce

• This example demonstrates how to debounce an
input, which means checking twice in a short period
of time to make sure it's definitely pressed. Without
debouncing, pressing the button once can appear to
the code as multiple on/off inputs.

• Using the same schematic as in the “combine inputs
(buttons) and outputs (LEDs) Sketch” we will do a LED
toggle on or off with switch pushbutton pressing.

• First without de-bounce then with de-bounce.

Schematic

LED is connected to pin 11

switch is connected to pin 12

Try the Toggle without the debounce
first,

 Then add the delay(500) function to
debounce the switch.

LED Toggle Sketch (no debounce)

// Led toggle

int inputPin = 12; // push button switch pin 12

int ledPin = 11; // Led wired to pin 11

int ledValue = LOW

void setup ()

 {

 pinMode (inputPin, INPUT); // set pin 12 to input

 pinMode (ledPin, OUTPUT); // set pin 11 to output

}

void loop ()

{

 if (digitalRead (inputPin) == LOW)

{

 ledValue = ! ledValue;

 digitalWrite (ledPin, ledValue);

} }

LED Toggle Sketch (with debounce)

// Led toggle

int inputPin = 12; // push button switch pin 12

int ledPin = 11; // Led wired to pin 11

int ledValue = LOW;

void setup()

{

 pinMode(inputPin, INPUT); // set pin 12 to input

 pinMode(ledPin, OUTPUT); // set pin 11 to output

}

void loop ()

{

 if (digitalRead (inputPin) == LOW)

{

 ledValue = ! ledValue;

 digitalWrite (ledPin, ledValue);

 delay (500); // 500 ms delay to get past switch bounce

} }

Questions

• What does the IDE Serial Monitor do?

• How do you mark comments in your sketch

• Why do you have to debounce a switch ?

• Can you see the bounce using your Analog Discovery
Kit scope? Free-run or single sweep mode?

• Can you see the effect of the bounce on the Led ?

• Did you play around with the delay time to see the
minim time required to debounce?

