
1

Java Tutorial

Level 0

31-Dec-13 1

Different Programming

Paradigms

• Functional/procedural programming:

– program is a list of instructions to the

computer

• Object-oriented programming

– program is composed of a collection objects

that communicate with each other

31-Dec-13 2

Main Concepts

• Object

• Class

• Inheritance

• Encapsulation

31-Dec-13 3

Objects

• identity – unique identification of an object

• attributes – data/state

• services – methods/operations

– supported by the object

– within objects responsibility to provide these

services to other clients

31-Dec-13 4

Class

• “type”

• object is an instance of class

• class groups similar objects

– same (structure of) attributes

– same services

• object holds values of its class’s attributes

31-Dec-13 5

Inheritance

• Class hierarchy

• Generalization and Specialization

– subclass inherits attributes and services from its

superclass

– subclass may add new attributes and services

– subclass may reuse the code in the superclass

– subclasses provide specialized behaviors (overriding

and dynamic binding)

– partially define and implement common behaviors

(abstract)

31-Dec-13 6

2

Encapsulation

• Separation between internal state of the

object and its external aspects

• How ?

– control access to members of the class

– interface “type”

31-Dec-13 7

What does it buy us ?

• Modularity

– source code for an object can be written and maintained

independently of the source code for other objects

– easier maintainance and reuse

• Information hiding

– other objects can ignore implementation details

– security (object has control over its internal state)

• but

– shared data need special design patterns (e.g., DB)

– performance overhead

31-Dec-13 8

mainly for c++ programmer

Adapted with permission from Avivit Bercovici Boden, Technion31-Dec-13

Why Java ?

• Portable

• Easy to learn

• [Designed to be used on the Internet]

31-Dec-13 10

JVM

• JVM stands for

Java Virtual Machine

• Unlike other languages, Java “executables”

are executed on a CPU that does not exist.

31-Dec-13 11

OS/Hardware

machine code
C source code

myprog.c
gcc

myprog.exe

Platform Dependent

JVM

bytecode
Java source code

myprog.java
javac

myprog.class

OS/Hardware

Platform Independent

31-Dec-13 12

3

Primitive types

31-Dec-13 13

• int 4 bytes

• short 2 bytes

• long 8 bytes

• byte 1 byte

• float 4 bytes

• double 8 bytes

• char Unicode encoding (2 bytes)

• boolean {true,false}

Behaviors is

exactly as in

C++

Note:

Primitive type

always begin

with lower-case

• Constants

37 integer

37.2 float

42F float

0754 integer (octal)

0xfe integer (hexadecimal)

Primitive types - cont.

31-Dec-13 14

Wrappers

31-Dec-13 15

Java provides Objects which wrap

primitive types and supply methods.

Example:

Integer n = new Integer(“4”);

int m = n.intValue();

Read more about Integer in JDK Documentation

Hello World

31-Dec-13 16

class Hello {

public static void main(String[] args) {

System.out.println(“Hello World !!!”);

}

}

Hello.java

C:\javac Hello.java

C:\java Hello

(compilation creates Hello.class)

(Execution on the local JVM)

More sophisticated

31-Dec-13 17

class Kyle {

private boolean kennyIsAlive_;

public Kyle() { kennyIsAlive_ = true; }

public Kyle(Kyle aKyle) {

kennyIsAlive_ = aKyle.kennyIsAlive_;

}

public String theyKilledKenny() {

if (kennyIsAlive_) {

kennyIsAlive_ = false;

return “You bastards !!!”;

} else {

return “?”;

}

}

public static void main(String[] args) {

Kyle k = new Kyle();

String s = k.theyKilledKenny();

System.out.println(“Kyle: “ + s);

}

}

Default

C’tor

Copy

C’tor

Results

31-Dec-13 18

javac Kyle.java (to compile)

java Kyle (to execute)

Kyle: You bastards !!!

4

Arrays

31-Dec-13 19

• Array is an object

• Array size is fixed

Animal[] arr; // nothing yet …

arr = new Animal[4]; // only array of pointers

for(int i=0 ; i < arr.length ; i++) {

arr[i] = new Animal();

// now we have a complete array

Arrays - Multidimensional

• In C++

31-Dec-13 20

Animal arr[2][2]

Is:

• In Java

What is the type of

the object here ?

Animal[][] arr=

new Animal[2][2]

Static - [1/4]

• Member data - Same data is used for all the
instances (objects) of some Class.

31-Dec-13 21

Class A {

public int y = 0;

public static int x_ = 1;

};

A a = new A();

A b = new A();

System.out.println(b.x_);

a.x_ = 5;

System.out.println(b.x_);

A.x_ = 10;

System.out.println(b.x_);

Assignment performed

on the first access to the

Class.

Only one instance of ‘x’

exists in memory

Output:

1

5

10

a b

y y

A.x_

0 0

1

Static - [2/4]

• Member function

– Static member function can access only static members

– Static member function can be called without an

instance.

31-Dec-13 22

Class TeaPot {

private static int numOfTP = 0;

private Color myColor_;

public TeaPot(Color c) {

myColor_ = c;

numOfTP++;

}

public static int howManyTeaPots()

{ return numOfTP; }

// error :

public static Color getColor()

{ return myColor_; }

}

Static - [2/4] cont.

31-Dec-13 23

Usage:

TeaPot tp1 = new TeaPot(Color.RED);

TeaPot tp2 = new TeaPot(Color.GREEN);

System.out.println(“We have “ +

TeaPot.howManyTeaPots()+ “Tea Pots”);

Static - [3/4]

• Block

– Code that is executed in the first reference to the class.

– Several static blocks can exist in the same class

(Execution order is by the appearance order in the

class definition).

– Only static members can be accessed.

31-Dec-13 24

class RandomGenerator {

private static int seed_;

static {

int t = System.getTime() % 100;

seed_ = System.getTime();

while(t-- > 0)

seed_ = getNextNumber(seed_);

}

}

}

5

String is an Object

31-Dec-13 25

• Constant strings as in C, does not exist

• The function call foo(“Hello”) creates a String object,

containing “Hello”, and passes reference to it to foo.

• There is no point in writing :

• The String object is a constant. It can’t be changed using

a reference to it.

String s = new String(“Hello”);

Flow control

Basically, it is exactly like c/c++.

31-Dec-13 26

if/else

do/while

for

switch

If(x==4) {

// act1

} else {

// act2

}

int i=5;

do {

// act1

i--;

} while(i!=0);

int j;

for(int i=0;i<=9;i++)

{

j+=i;

}

char

c=IN.getChar();

switch(c) {

case ‘a’:

case ‘b’:

// act1

break;

default:

// act2

}

Packages

• Java code has hierarchical structure.

• The environment variable CLASSPATH contains the

directory names of the roots.

• Every Object belongs to a package (‘package’

keyword)

• Object full name contains the name full name of

the package containing it.

31-Dec-13 27

Access Control

• public member (function/data)

– Can be called/modified from outside.

• protected

– Can be called/modified from derived classes

• private

– Can be called/modified only from the current class

• default (if no access modifier stated)

– Usually referred to as “Friendly”.

– Can be called/modified/instantiated from the same package.

31-Dec-13 28

Inheritance

31-Dec-13 29

Base

Derived

class Base {

Base(){}

Base(int i) {}

protected void foo() {…}

}

class Derived extends Base {

Derived() {}

protected void foo() {…}

Derived(int i) {

super(i);

…

super.foo();

}

}

As opposed to C++, it is possible to inherit only from ONE class.

Pros avoids many potential problems and bugs.

Cons might cause code replication

Polymorphism

• Inheritance creates an “is a” relation:

For example, if B inherits from A, than we say that

“B is also an A”.

Implications are:

– access rights (Java forbids reducing access rights) -

derived class can receive all the messages that the

base class can.

– behavior

– precondition and postcondition

31-Dec-13 30

6

Inheritance (2)

• In Java, all methods are virtual :

class Base {

void foo() {

System.out.println(“Base”);

}

}

class Derived extends Base {

void foo() {

System.out.println(“Derived”);

}

}

public class Test {

public static void main(String[] args) {

Base b = new Derived();

b.foo(); // Derived.foo() will be activated

}

}

31-Dec-13 31

Inheritance (3) - Optional

class classC extends classB {

classC(int arg1, int arg2){

this(arg1);

System.out.println("In classC(int arg1, int arg2)");

}

classC(int arg1){

super(arg1);

System.out.println("In classC(int arg1)");

}

}

class classB extends classA {

classB(int arg1){

super(arg1);

System.out.println("In classB(int arg1)");

}

classB(){

System.out.println("In classB()");

}

}

31-Dec-13 32

Inheritance (3) - Optional
class classA {

classA(int arg1){

System.out.println("In classA(int arg1)");

}

classA(){

System.out.println("In classA()");

}

}

class classB extends classA {

classB(int arg1, int arg2){

this(arg1);

System.out.println("In classB(int arg1, int arg2)");

}

classB(int arg1){

super(arg1);

System.out.println("In classB(int arg1)");

}

class B() {

System.out.println("In classB()");

}

}
31-Dec-13 33

Abstract

• abstract member function, means that the function does not have an implementation.

• abstract class, is class that can not be instantiated.

AbstractTest.java:6: class AbstractTest is an abstract class.
It can't be instantiated.

new AbstractTest();
^

1 error

31-Dec-13 34

NOTE:

An abstract class is not required to have an abstract method in it.

But any class that has an abstract method in it or that does

not provide an implementation for any abstract methods declared

in its superclasses must be declared as an abstract class.

Example

Abstract - Example

31-Dec-13 35

package java.lang;

public abstract class Shape {

public abstract void draw();

public void move(int x, int y) {

setColor(BackGroundColor);

draw();

setCenter(x,y);

setColor(ForeGroundColor);

draw();

}

}

package java.lang;

public class Circle extends Shape {

public void draw() {

// draw the circle ...

}

}

Interface

Interfaces are useful for the following:

• Capturing similarities among unrelated
classes without artificially forcing a class
relationship.

• Declaring methods that one or more
classes are expected to implement.

• Revealing an object's programming
interface without revealing its class.

31-Dec-13 36

7

Interface

• abstract “class”

• Helps defining a “usage contract” between classes

• All methods are public

• Java’s compensation for removing the multiple
inheritance. You can “inherit” as many interfaces
as you want.

31-Dec-13 37

Example * - The correct term is “to implement”

an interface

Interface

31-Dec-13 38

interface SouthParkCharacter {

void curse();

}

interface IChef {

void cook(Food food);

}

interface BabyKicker {

void kickTheBaby(Baby);

}

class Chef implements IChef, SouthParkCharacter {

// overridden methods MUST be public

// can you tell why ?

public void curse() { … }

public void cook(Food f) { … }

}

* access rights (Java forbids reducing of access rights)

When to use an interface ?

31-Dec-13 39

Perfect tool for encapsulating the

classes inner structure. Only the

interface will be exposed

Collections

• Collection/container

– object that groups multiple elements

– used to store, retrieve, manipulate, communicate

aggregate data

• Iterator - object used for traversing a collection

and selectively remove elements

• Generics – implementation is parametric in the

type of elements

31-Dec-13 40

Java Collection Framework

• Goal: Implement reusable data-structures and
functionality

• Collection interfaces - manipulate collections
independently of representation details

• Collection implementations - reusable data structures

List<String> list = new ArrayList<String>(c);

• Algorithms - reusable functionality

– computations on objects that implement collection interfaces

– e.g., searching, sorting

– polymorphic: the same method can be used on many different
implementations of the appropriate collection interface

31-Dec-13 41

Collection Interfaces

31-Dec-13 42

Collection

Set List Queue

SortedSet

Map

Sorted Map

8

Collection Interface

• Basic Operations
– int size();

– boolean isEmpty();

– boolean contains(Object element);

– boolean add(E element);

– boolean remove(Object element);

– Iterator iterator();

• Bulk Operations
– boolean containsAll(Collection<?> c);

– boolean addAll(Collection<? extends E> c);

– boolean removeAll(Collection<?> c);

– boolean retainAll(Collection<?> c);

– void clear();

• Array Operations
– Object[] toArray(); <T> T[] toArray(T[] a); }

31-Dec-13 43

General Purpose Implementations

31-Dec-13 44

Collection

Set List Queue

SortedSet

Map

Sorted Map

HashSet HashMap

List<String> list1 = new ArrayList<String>(c);

ArrayListTreeSet TreeMapLinkedList

List<String> list2 = new LinkedList<String>(c);

final

• final member data

Constant member

• final member function

The method can’t be

overridden.

• final class

‘Base’ is final, thus it

can’t be extended

31-Dec-13 45

final class Base {

final int i=5;

final void foo() {

i=10;

//what will the compiler say

about this?

}

}

class Derived extends Base {

// Error

// another foo ...

void foo() {

}

}(String class is final)

final

Derived.java:6: Can't subclass final classes: class Base

class class Derived extends Base {

^

1 error

31-Dec-13 46

final class Base {

final int i=5;

final void foo() {

i=10;

}

}

class Derived extends Base {

// Error

// another foo ...

void foo() {

}

}

IO - Introduction

• Definition

– Stream is a flow of data

• characters read from a file

• bytes written to the network

• …

• Philosophy

– All streams in the world are basically the same.

– Streams can be divided (as the name “IO” suggests) to Input and
Output streams.

• Implementation

– Incoming flow of data (characters) implements “Reader” (InputStream for

bytes)

– Outgoing flow of data (characters) implements “Writer” (OutputStream for

bytes –eg. Images, sounds etc.)

31-Dec-13 47

Exception - What is it and why do I care?

Definition: An exception is an event that

occurs during the execution of a program

that disrupts the normal flow of

instructions.

31-Dec-13 48

• Exception is an Object

• Exception class must be descendent of Throwable.

9

Exception - What is it and why do I care?(2)

31-Dec-13 49

By using exceptions to manage errors, Java

programs have the following advantages over

traditional error management techniques:

1: Separating Error Handling Code from "Regular"

Code

2: Propagating Errors Up the Call Stack

3: Grouping Error Types and Error Differentiation

1: Separating Error Handling Code from "Regular" Code (1)

readFile {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}

31-Dec-13 50

1: Separating Error Handling Code from "Regular" Code (2)

errorCodeType readFile {
initialize errorCode = 0;

open the file;
if (theFileIsOpen) {

determine the length of the file;
if (gotTheFileLength) {

allocate that much memory;
if (gotEnoughMemory) {

read the file into memory;
if (readFailed) {

errorCode = -1;

}

} else {

errorCode = -2;

}

} else {

errorCode = -3;

}

close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;

} else {

errorCode = errorCode and -4;

}

} else {

errorCode = -5;

}

return errorCode;

}
31-Dec-13 51

1: Separating Error Handling Code from "Regular" Code (3)

readFile {

try {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

} catch (fileOpenFailed) {

doSomething;

} catch (sizeDeterminationFailed) {

doSomething;

} catch (memoryAllocationFailed) {

doSomething;

} catch (readFailed) {

doSomething;

} catch (fileCloseFailed) {

doSomething;

}

}31-Dec-13 52

2: Propagating Errors Up the Call Stack

method1 {

try {

call method2;

} catch (exception) {

doErrorProcessing;

}

}

method2 throws exception {

call method3;

}

method3 throws exception {

call readFile;

}

31-Dec-13 53

CMSC 331 Principles of programming languages

12/31/2013 1

JAVA JAVA BASICSBASICS

Level 1Level 1

Comments are almost like C++

The javadoc program generates HTML API

documentation from the “javadoc” style

comments in your code.

31-Dec-13 2

/* This kind of comment can span multiple lines */

// This kind is to the end of the line

/**

* This kind of comment is a special

* ‘javadoc’ style comment

*/

An example of a class

31-Dec-13 3

class Person {

String name;

int age;

void birthday () {

age++;

System.out.println (name +

' is now ' + age);

}

}

Variable

Method

Scoping

• As in C/C++, scope is determined by the placement of curly braces {}.

• A variable defined within a scope is available only to the end of that

scope.

31-Dec-13 4

{ int x = 12;

/* only x available */

{ int q = 96;

/* both x and q available */

}

/* only x available */

/* q “out of scope” */

}

{ int x = 12;

{ int x = 96; /* illegal */

}

}

This is ok in C/C++ but not in Java.

An array is an object

• Person mary = new Person ();

• int myArray[] = new int[5];

• int myArray[] = {1, 4, 9, 16, 25};

• String languages [] = {"Prolog",

"Java"};

• Since arrays are objects they are allocated dynamically

• Arrays, like all objects, are subject to garbage collection

when no more references remain

– so fewer memory leaks

– Java doesn’t have pointers!

31-Dec-13 5

Scope of Objects

• Java objects don’t have the same lifetimes as
primitives.

• When you create a Java object using new, it
hangs around past the end of the scope.

• Here, the scope of name s is delimited by the
{}s but the String object hangs around until
GC’d
{

String s = new String("a
string");

} /* end of scope */

31-Dec-13 6

CMSC 331 Principles of programming languages

12/31/2013 2

Methods, arguments and return values

• Java methods are like C/C++ functions. General case:

returnType methodName (arg1, arg2, … argN) {

methodBody

}

The return keyword exits a method optionally with a value

int storage(String s) {return s.length() * 2;}

boolean flag() { return true; }

float naturalLogBase() { return 2.718f; }

void nothing() { return; }

void nothing2() {}

31-Dec-13 7

The static keyword

• Java methods and variables can be declared
static

• These exist independent of any object

• This means that a Class’s
– static methods can be called even if no objects of

that class have been created and
– static data is “shared” by all instances (i.e., one

rvalue per class instead of one per instance

31-Dec-13 8

class StaticTest {static int i = 47;}

StaticTest st1 = new StaticTest();

StaticTest st2 = new StaticTest();

// st1.i == st2.I == 47

StaticTest.i++; // or st1.I++ or st2.I++

// st1.i == st2.I == 48

Array Operations

• Subscripts always start at 0 as in C

• Subscript checking is done automatically

• Certain operations are defined on arrays of

objects, as for other classes

– e.g. myArray.length == 5

31-Dec-13 9

Example Example

ProgramsPrograms

Echo.java

31-Dec-13 11

C:\UMBC\331\java>type echo.java

// This is the Echo example from the Sun tutorial

class echo {

public static void main(String args[]) {

for (int i=0; i < args.length; i++) {

System.out.println(args[i]);

}

}

}

C:\UMBC\331\java>javac echo.java

C:\UMBC\331\java>java echo this is pretty silly

this

is

pretty

silly

C:\UMBC\331\java>

Factorial Example

/**

* This program computes the factorial of a number

*/

public class Factorial { // Define a class

public static void main(String[] args) { // The program starts here

int input = Integer.parseInt(args[0]); // Get the user's input

double result = factorial(input); // Compute the factorial

System.out.println(result); // Print out the result

} // The main() method ends here

public static double factorial(int x) { // This method computes x!

if (x < 0) // Check for bad input

return 0.0; // if bad, return 0

double fact = 1.0; // Begin with an initial value

while(x > 1) { // Loop until x equals 1

fact = fact * x; // multiply by x each time

x = x - 1; // and then decrement x

} // Jump back to the star of loop

return fact; // Return the result

} // factorial() ends here

} // The class ends here

31-Dec-13 12

From Java in a Nutshell

CMSC 331 Principles of programming languages

12/31/2013 3

JAVA Classes

• The class is the fundamental concept in JAVA (and other

OOPLs)

• A class describes some data object(s), and the operations

(or methods) that can be applied to those objects

• Every object and method in Java belongs to a class

• Classes have data (fields) and code (methods) and classes

(member classes or inner classes)

• Static methods and fields belong to the class itself

• Others belong to instances

31-Dec-13 13

Example

public class Circle {

// A class field

public static final double PI= 3.14159; // A useful constant

// A class method: just compute a value based on the arguments

public static double radiansToDegrees(double rads) {

return rads * 180 / PI;

}

// An instance field

public double r; // The radius of the circle

// Two methods which operate on the instance fields of an object

public double area() { // Compute the area of the

circle

return PI * r * r;

}

public double circumference() { // Compute the circumference of

the circle

return 2 * PI * r;

}
}

31-Dec-13 14

Constructors

• Classes should define one or more methods to create or
construct instances of the class

• Their name is the same as the class name

– note deviation from convention that methods begin with lower case

• Constructors are differentiated by the number and types of
their arguments

– An example of overloading

• If you don’t define a constructor, a default one will be
created.

• Constructors automatically invoke the zero argument
constructor of their superclass when they begin (note that
this yields a recursive process!)

31-Dec-13 15

Constructor example

public class Circle {

public static final double PI = 3.14159; // A constant

public double r; // instance field holds circle’s radius

// The constructor method: initialize the radius field

public Circle(double r) { this.r = r; }

// Constructor to use if no arguments

public Circle() { r = 1.0; }

// better: public Circle() { this(1.0); }

// The instance methods: compute values based on radius

public double circumference() { return 2 * PI * r; }

public double area() { return PI * r*r; }

}

31-Dec-13 16

this.r refers to the r

field of the class

This() refers to a

constructor for the class

Extending a class

• Class hierarchies reflect subclass-superclass relations among

classes.

• One arranges classes in hierarchies:

– A class inherits instance variables and instance methods from all of its

superclasses. Tree -> BinaryTree -> BST

– You can specify only ONE superclass for any class.

• When a subclass-superclass chain contains multiple instance
methods with the same signature (name, arity, and argument

types), the one closest to the target instance in the subclass-

superclass chain is the one executed.

– All others are shadowed/overridden.

• Something like multiple inheritance can be done via interfaces
(more on this later)

• What’s the superclass of a class defined without an extends

clause?

31-Dec-13 17

Extending a class

public class PlaneCircle extends Circle {

// We automatically inherit the fields and methods of Circle,

// so we only have to put the new stuff here.

// New instance fields that store the center point of the circle

public double cx, cy;

// A new constructor method to initialize the new fields

// It uses a special syntax to invoke the Circle() constructor

public PlaneCircle(double r, double x, double y) {

super(r); // Invoke the constructor of the superclass, Circle()

this.cx = x; // Initialize the instance field cx

this.cy = y; // Initialize the instance field cy

}

// The area() and circumference() methods are inherited from Circle

// A new instance method that checks whether a point is inside the circle

// Note that it uses the inherited instance field r

public boolean isInside(double x, double y) {

double dx = x - cx, dy = y - cy; // Distance from center

double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem

return (distance < r); // Returns true or false

}

}

31-Dec-13 18

CMSC 331 Principles of programming languages

12/31/2013 4

Overloading, overwriting, and shadowing

• Overloading occurs when Java can distinguish two procedures with the

same name by examining the number or types of their parameters.

• Shadowing or overriding occurs when two procedures with the same

signature (name, the same number of parameters, and the same

parameter types) are defined in different classes, one of which is a

superclass of the other.

31-Dec-13 19

On designing class hierarchies

• Programs should obey the explicit-representation principle, with classes

included to reflect natural categories.

• Programs should obey the no-duplication principle, with instance

methods situated among class definitions to facilitate sharing.

• Programs should obey the look-it-up principle, with class definitions

including instance variables for stable, frequently requested information.

• Programs should obey the need-to-know principle, with public interfaces

designed to restrict instance-variable and instance-method access, thus

facilitating the improvement and maintenance of nonpublic program

elements.

• If you find yourself using the phrase an X is a Y when describing the

relation between two classes, then the X class is a subclass of the Y class.

• If you find yourself using X has a Y when describing the relation between

two classes, then instances of the Y class appear as parts of instances of

the X class.

31-Dec-13 20

Data hiding and encapsulation

• Data-hiding or encapsulation is an
important part of the OO paradigm.

• Classes should carefully control access to
their data and methods in order to

–Hide the irrelevant implementation-level details
so they can be easily changed

–Protect the class against accidental or malicious
damage.

–Keep the externally visible class simple and easy
to document

• Java has a simple access control mechanism
to help with encapsulation

Modifiers: public, protected, private, and

31-Dec-13 21

Example
encapsulation

package shapes; // Specify a package for the class

public class Circle { // The class is still public

public static final double PI = 3.14159;

protected double r; // Radius is hidden, but visible to subclasses

// A method to enforce the restriction on the radius

// This is an implementation detail that may be of interest to subclasses

protected checkRadius(double radius) {

if (radius < 0.0)

throw new IllegalArgumentException("radius may not be negative.");

}

// The constructor method

public Circle(double r) {checkRadius(r); this.r = r; }

// Public data accessor methods

public double getRadius() { return r; };

public void setRadius(double r) { checkRadius(r); this.r = r;}

// Methods to operate on the instance field

public double area() { return PI * r * r; }

public double circumference() { return 2 * PI * r; }

}

31-Dec-13 22

Access control

• Access to packages

– Java offers no control mechanisms for
packages.

– If you can find and read the package you can
access it

• Access to classes

– All top level classes in package P are accessible
anywhere in P

– All public top-level classes in P are accessible
anywhere

• Access to class members (in class C in
package P)

– Public: accessible anywhere C is accessible

31-Dec-13 23 31-Dec-13 24

CMSC 331 Principles of programming languages

12/31/2013 5

Getters and setters

• A getter is a method that extracts information from an instance.

– One benefit: you can include additional computation in a getter.

• A setter is a method that inserts information into an instance (also
known as mutators).

– A setter method can check the validity of the new value (e.g., between 1
and 7) or trigger a side effect (e.g., update a display)

• Getters and setters can be used even without underlying matching
variables

• Considered good OO practice

• Essential to javabeans

• Convention: for variable fooBar of type fbtype, define

– getFooBar()

– setFooBar(fbtype x)

31-Dec-13 25

Example
getters and setters

package shapes; // Specify a package for the class

public class Circle { // The class is still public

// This is a generally useful constant, so we keep it public

public static final double PI = 3.14159;

protected double r; // Radius is hidden, but visible to subclasses

// A method to enforce the restriction on the radius

// This is an implementation detail that may be of interest to subclasses

protected checkRadius(double radius) {

if (radius < 0.0)

throw new IllegalArgumentException("radius may not be negative.");

}

// The constructor method

public Circle(double r) { checkRadius(r); this.r = r;}

// Public data accessor methods

public double getRadius() { return r; };

public void setRadius(double r) { checkRadius(r); this.r = r;}

// Methods to operate on the instance field

public double area() { return PI * r * r; }

public double circumference() { return 2 * PI * r; }

}

31-Dec-13 26

Abstract classes and methods

• Abstract vs. concrete classes

• Abstract classes can not be instantiated

public abstract class shape { }

• An abstract method is a method w/o a body

public abstract double area();

• (Only) Abstract classes can have abstract

methods

• In fact, any class with an abstract method is

automatically an abstract class
31-Dec-13 27

Example
abstract class

public abstract class Shape {

public abstract double area(); // Abstract methods: note

public abstract double circumference();// semicolon instead of body.

}

class Circle extends Shape {

public static final double PI = 3.14159265358979323846;

protected double r; // Instance data

public Circle(double r) { this.r = r; } // Constructor

public double getRadius() { return r; } // Accessor

public double area() { return PI*r*r; } // Implementations of

public double circumference() { return 2*PI*r; } // abstract methods.

}

class Rectangle extends Shape {

protected double w, h; // Instance data

public Rectangle(double w, double h) { // Constructor

this.w = w; this.h = h;

}

public double getWidth() { return w; } // Accessor method

public double getHeight() { return h; } // Another accessor

public double area() { return w*h; } // Implementations of

public double circumference() { return 2*(w + h); } // abstract methods.

}

31-Dec-13 28

Syntax Notes

• No global variables

– class variables and methods may be applied to any

instance of an object

– methods may have local (private?) variables

• No pointers

– but complex data objects are “referenced”

• Other parts of Java are borrowed from PL/I,

Modula, and other languages

31-Dec-13 29

1

A little cup of Java-coffee

Level 2

31-Dec-13 1

Today’s session

• Part-1) Java overview (5mins)

– What java is

– Java features

– Java’s cross-platform

• Part-2) two simple and typical java programs

– A stand-lone java and its running (5mins)

– A applet and its running (5mins)

• Part-3) how to learn java by yourself (5mins)

– 3 stages

– resources

31-Dec-13 2

Part-one

• Java overview

31-Dec-13 3

What Java is

• Java is an “easy” programming language,

– just a tool like C++, VB, …and English. Somehow a

language tool itself is not so complex.

• Java works for internet project(mainly), and apply “3-

tired architecture”, coding on the server-side

– So besides Java language knowledge, we need to learn lots

of thing about telecommunication on WEB, to finish a

real-time project.

31-Dec-13 4

What Java is(continue)

• Java applies Object-Oriented Tech.

– Java is not so difficulty, though OOP is. A java

expert must be an OOP expert.

• Java is slower than C++ (3-5 times), Java’s

database function is slower than VB.

• Java is very portable: cross-platform

31-Dec-13 5

Java’s Features

• Simple

Java omits many rarely used, poorly understood, confusing

features of C++. Say : No Pointer! No dynamic delete.

• Object Oriented

Object –oriented design is a technology that focuses design

on the data (object) and on the interfaces to it.

Let’s say, everything is an object, everything will become a
class in Java. Every java program, in top- level view, is
classes.

31-Dec-13 6

2

Java’s Features(continue)

• Distributed

Basically, Java is for Net-Work application, for WEB project.

Java can open and access “objects” across the Net via URLs

(Uniform Resource Locator)----eg.

“http//:gamut.neiu.edu/~ylei/home.html”,

with the same ease as when accessing a local file system

31-Dec-13 7

Java’s Features(continue)

• Robust

The single biggest difference between Java

and C/C++ is that Java has “a inner safe pointer-

model”, therefore it eliminates the possibility of

overwriting memory and corrupting data, so

programmers feel very safe in coding.

31-Dec-13 8

Java’s Features(continue)

• GUI [Java-Swing]

For some reason, Sun believe their java-swing is

very important, so they always put it in their

certificate-tests.

• Multi-threaded

• Secure [Exception handling]

• Dynamic [for Server-side coding]

31-Dec-13 9

Java’s cross-platform

• Interpreted Execute: cross-platform

why: For cross-platform purpose. Once coding, run anywhere.

The Java interpreter (java.exe and its javaVirtualMachine) can execute
compiled Java-byte-codes(Xxx.class) directly on any machine to which the
interpreter has been ported.

How: (eg. Dos command line style)

- Edit source code “demo.java” , by notepad/or other IDE tools

- Compile (javac.exe) “demo.java”� javac Demo.java � Java byte

codes, namely, Demo.class

- Execute (Interpreted Execute) java Demo

• Speed issue AND new solutions: java is slower than c++ in running.

however, by now, there are some new technology of Java compiler, such as
“Just-in-time”, and “HotSpot adaptive Compiler”. They make java very faster
than before.

31-Dec-13 10

Ps: Compiler and Interpreters: Run in Physical CPU

31-Dec-13 11

1. Compilers use the traditional compile/link/run strategy.

Examples: C, C++, ML.

source [complie] native-files [link] nativeprogram [run]

demo.c ---� obj -� demo.exe --�Intel cpu

Demoh.h

2. Interpreters execute the source code directly. Examples:

BASIC, Perl, TCL/Tk, ML.

source [load] [interpret run]

demo.perl -� source-program � -� Intel cpu

data

Java: Run in Virtual Cpu

:cross-platfrom

31-Dec-13 12

Demo.java���� Compile ����Demo.class���� link���� xxx.class

Source-code “javac” byte-code files bytecode program

����interpretedly run on VM |--���� Intel CPU

(virtual CPU: JSDK) |--� … CPU

|--���� Apple CPU

3

Part-2 2 samples

• How many kinds of java programs ?

• Demo-1: Stand-lone sample

• Demo-2: an Applet sample

31-Dec-13 13

How many kinds of Java

Programs?

• Un-network app.: (1)Standalone Java program (today)

• Network app: non-standalone Java program

Internet: (2)Applet , (today)

(3)servlet

(4)JavaBean classes

Intranet: (5)EJB (EnterpriseJavaBean),

(6)RMI, etc

31-Dec-13 14

Standalone Java Program

• The main() method

public static void main(String args[]){

...

}

public--- the interpreter can call it

static ----It is a static method belonging to the class

void -----It does not return a value

String----It always has an array of String objects as its formal parameter.
the array contains any arguments passed to the program on the
command line

the source file’s name must match the class name which main method is
in

31-Dec-13 15

Java program

Program Output

31-Dec-13 16

1 // Fig. 2.1: Welcome1.java

2 // A first program in Java

3

4 public class Welcome1 {

5 public static void main(String args[])

6 {

7 System.out.println("Welcome to Java Programming!");

8 }

Welcome to Java Programming!

9 }

Java program

Program Output

31-Dec-13 17

1 // Fig. 2.1: Welcome1.java

2 // A first program in Java

3

4 public class Welcome1 {

5 public static void main(String args[])

6 {

7 System.out.println("Welcome to Java Programming!");

8 }

9 }

A Simple GUI Program: Printing a

Line of Text

• Display

– Most Java applications use windows or a dialog box

• We have used command window

– Class JOptionPane allows us to use dialog boxes

• Packages

– Set of predefined classes for us to use

– Groups of related classes called packages

• Group of all packages known as Java class library or Java
applications programming interface (Java API)

– JOptionPane is in the javax.swing package

• Package has classes for using Graphical User Interfaces (GUIs)

31-Dec-13 18

4

1 // Fig. 2.6: Welcome4.java

2 // Printing multiple lines in a dialog box

3 import javax.swing.JOptionPane; // import class JOptionPane

4

5 public class Welcome4 {

6 public static void main(String args[])

7 {

8 JOptionPane.showMessageDialog(

9 null, "Welcome\nto\nJava\nProgramming!");

10

11 System.exit(0); // terminate the program

12 }

13 }

31-Dec-13 19

Packages

• Like “namespace” in C++

• How to use:

– C++: using namespace xxx

– Java: import xxx, or

import xxx.xx

31-Dec-13 20

A Simple Java Applet: Drawing a

String

– appletviewer only understands <applet>
tags

• Ignores everything else

• Minimal browser

– Executing the applet

• appletviewer WelcomeApplet.html

• Perform in directory containing .class file

31-Dec-13 21

1 <html>

2 <applet code="WelcomeApplet.class" width=300 height=30>

3 </applet>

4 </html>

31-Dec-13 22

1 // Fig. 3.6: WelcomeApplet.java

2 // A first applet in Java

33 import javax.swing.JApplet; // import class JApplet

4 import java.awt.Graphics; // import class Graphics

5

66 public class WelcomeApplet extends JApplet {

77 public void paint(Graphics g)

8 {

9 g.drawString("Welcome to Java Programming!", 25, 25);

10 }

11 }

1 <html>

2 <applet code="WelcomeApplet.class" width=300 height=30>

3 </applet>

4 </html>

import allows us to use

predefined classes (allowing

us to use applets and

graphics, in this case).

extends allows us to inherit the

capabilities of class JApplet.

Method paint is guaranteed to

be called in all applets. Its first

line must be defined as above.

31-Dec-13 23

1 // Fig. 3.8: WelcomeApplet2.java

2 // Displaying multiple strings

3 import javax.swing.JApplet; // import class JApplet

4 import java.awt.Graphics; // import class Graphics

5

6 public class WelcomeApplet2 extends JApplet {

7 public void paint(Graphics g)

8 {

99 g.drawString("Welcome to", 25, 25);

10 g.drawString("Java Programming!", 25, 40);

11 }

12 }

1 <html>

2 <applet code="WelcomeApplet2.class" width=300 height=45>

3 </applet>

4 </html>

The two drawString statements

simulate a newline. In fact, the

concept of lines of text does not

exist when drawing strings.

31-Dec-13 24

1 // Displaying text and lines

2 import javax.swing.JApplet; // import class JApplet

3 import java.awt.Graphics; // import class Graphics

4

5 public class WelcomeLines extends JApplet {

6 public void paint(Graphics g)

7 {

8 g.drawLine(15, 10, 210, 10);

99 g.drawLine(15, 30, 210, 30);

10 g.drawString("Welcome to Java Programming!", 25, 25);

11 }

12 }

1 <html>

2 <applet code="WelcomeLines.class" width=300 height=40>

3 </applet>

4 </html>

Draw horizontal lines with
drawLine (endpoints have same

y coordinate).

5

Part-3

• How to learn Java by ourself

31-Dec-13 25

3 stages

• S-1: basic
– Contents: language grammars +

GUI (swings and event-driven)

Applets

– 2-4 weeks

• S-2: mid-level projects
– Contents:

• Exception Handling

• Threads

• Streams

• Network

– 4-8 weeks

31-Dec-13 26

3 Stages(cont’d)

S-3: Advanced projects

contents: JavaBeans

RMI

Servlets and JSP

EJB…

many topics

time: years , just do projects with Java

31-Dec-13 27

Self-training Resources:

in Stage-1 and Stage-2

• Sun’s free JSDK. Download and install it.
– By the way, many books give us a free CD of JSDK.

– Visit http://orion.neiu.edu/~ncaftori/

• Online books <<Thinking in Java>>, it has many
translated version, Japanese, Chinese, etc.

• Sun’s web training

• Other books:
– Sun’s <<core java>>, it’s the base of Sun’s certificate-tests.

– <<Java:How to program>>, html style, friendly
• Search in http://deitel.com, a lots of sample codes

31-Dec-13 28

IDE’s: search Sun’s web:

sun.java.com

a. Jbuilder

b. Visual Age

c. Sun Forte

d. Visual Café

e. J++

31-Dec-13 29

Vishnu Career Advancement Program

Java Programming Assignments

Part – 1

1. Write a program in Java to check if a number is even or odd in Java? (input 2 output true, input 3 : output

false)

A number is called even if it is completely divisible by two and odd if it’s not completely divisible by two. For example

number 4 is even number because when you do 4/2 , remainder is 0 which means 4 is completely divisible by 2. On

the other hand 5 is odd number because 5/2 will result in remainder as 1

2. Write a program in Java to find out if a number is prime in Java? (input 7: output true , input 9 : output false)

A number is called prime if it is divisible by either itself or 1. There are many algorithm to find prime numbers e.g.

instead of dividing till number, division upto square root of number may be enough. Start from simplest one and than

try to solve this problem with couple of different ways.

3. Write Java program to check if a number is palindrome in Java? (121 is palindrome, 321 is not)

A number is called a palindrome if number is equal to reverse of number e.g. 121 is palindrome because reverse of

121 is 121 itself. On the other hand 321 is not palindrome because reverse of 321 is 123 which is not equal to 321

4. How to find if a number is power of 2 in Java? (1,2, 4 power of 2, 3 is not)

This is another interesting Java programming exercise. This program can be solved using different ways e.g. using

arithmetic operator or by using bit shift operator.

5. Write program to sort an integer array without using API methods?

Sorting questions are one of the integral part of programming questions. There are many sorting algorithm out there

to sort any array in Java e.g. Bubble sort, Insertion sort, Selection sort or quick sort. Implementing sorting algorithm

itself a good programming exercise in Java.

6. Write Java program to check if a number is Armstrong number or not? (input 153 output true, 123 output

false)

An Armstrong number of 3 digit is a number for which sum of cube of its digits are equal to number e.g. 371 is an

Armstrong number because 3*3*3 + 7*7*7 + 1*1*1 = 371)

7. Write a program in Java to reverse any String without using StringBuffer?

This is another classical Java programming question. You can reverse String in various way in Java but two

programming technique is used to do e.g. Iteration and Recursion. Try solving this problem using Iteration first by

using Java’s arithmetic operator and than look to implement a recursive solution.

8. Write a program in Java to print Fibonacci series up to given number? Write both iterative and recursive

version.

Fibonacci series a popular number series and very popular programming question in Java, in which number is equal

to sum of previous two numbers, starting from third. Fibonacci series is also a good recursion exercise and often

asked in Interviews as well. Try doing this exercise by using both Iteration e.g. loops and recursion.

Vishnu Career Advancement Program

Java Programming Assignments

9. Write a Java program to calculate factorial of an integer number ? Both iterative and recursive solution.

Calculating Factorial is also a classic recursion exercise in programming. Since factorial is a recursive function,

recursion becomes natural choice to solve this problem. You just need to remember formula for calculating factorial

which is for n! its n*(n-1)*…1.

10. Print following structures in Java?

*

*

 *

 *

 *

 *

Part – 2

1) Create an employee class with relevant information like name, id, salary and create employee objects.

2) Create Customer class with relevant information like name, address, account number, current

balance. Create Bank Application class and add customers to the bank application with relevant

methods like addCustomer, deleteCustomer, updateCustomer and getCustomerInfo etc.

3) Create Account class with account type, account number, minimum balance and current balance and

provide corresponding getter and setter methods along with calInterest method. Create

FixedDepositAccount, CurrAccount classes and inherit methods from Account class. Use Account class in

Customer class to store account information in the customer object.

4) Create Insufficient Balance exception class and use it appropriately in Account class.

Vishnu Career Advancement Program

Java Programming Assignments

5) After every 5 min query Bank Application Object and display existing customer names.

