
12/31/2013

1

C Programming

31-Dec-13 1© BVRIT – vCAP

Course Objectives

• To introduce problem solving approach

• To develop algorithm for the given problem

• To understand and appreciate the use of Functions

• To understand the coding standards of the Software Industry

• To understand Testing, Debugging and code review.

• To understand structures and Linked Lists.

31-Dec-13 2© BVRIT – vCAP

Introduction to Programming (1

of 2)

• A Computer program is a series of steps specified for the solution to a

problem, which a computer can understand and execute

• A Software Application (or Application) is a collection of

computer programs which address a real life problem for its end users

• A Software Project (or Project) is an undertaking to create a

software application by writing computer programs

Computer Program ?

Software Application ?

Software Project ?

31-Dec-13 3© BVRIT – vCAP

Introduction to Programming (2

of 2)

• A software project is a team effort

– Project Manager: Plans and manages the entire software project

– Module Leader: Manages and leads the team working on a particular module

within the software project

– Software Engineer: Writes code. A software engineer also tests the code

and delivers defect free code

Software Project Team?

31-Dec-13 4© BVRIT – vCAP

Importance of adhering to

standards and Best Practices

• A software project is a team effort.

• For smooth completion and delivery of the software project, it is essential that all

the team members follow standards and best practices which will shorten the

development time and cost of the project.

• The first time code is written, the following has to be kept in mind:

– Must be written using applicable standards

– Must have clear and consistent indentation for easy reading

– Must contain enough documentation in comments so that another person can

easily understand it.

31-Dec-13 5© BVRIT – vCAP

Importance of adhering to

standards and Best Practices

• Not following standards and best practices while writing code

will result in:

– Not able to complete coding and testing on time (Project delays)

– Not able to understand one’s own code after a period of time

– Complete rewriting of portions or entire code

– A lot of effort in rewriting the code.

– A lot of wasted effort and time to understand and review the code.

– Working Late nights

31-Dec-13 6© BVRIT – vCAP

12/31/2013

2

Comments in a C Program

• Comments are used to document programs and improve readability

• It is a very good practice to add comments to all the programs.

• In C Program, a comment will start with /* and ends with */

• Comments are ignored by the compiler during the compilation process.

• The object code will not contain the lines that are commented.

31-Dec-13 7© BVRIT – vCAP

Comments in a C Program Contd.

.

• Syntax:

/* Comments */

/*This is a single line comment */

/* This is a multiline

* comment in C */

/**

* This style of commenting is used for functions

**/

31-Dec-13 8© BVRIT – vCAP

Comments in a C Program Contd.

.
• Note 1: The code in any line should not exceed 80 columns.

• Common Programming Errors and Guidelines:

– (1) Forgetting to terminate the comment */

– Comments should make the code accessible to the reader

– Explain the code's intent in the heading

– Keep the comments up to date (if you update the code, update the

comment)

– Don't comment bad code--fix it

– Avoid useless comments

31-Dec-13 9© BVRIT – vCAP

Naming Variables According to

Standards

Prefix Data Type Example

i int and unsigned int iTotalMarks

f float fAverageMarks

d double dSalary

l long and unsigned long lFactorial

c signed char and unsigned char cChoice

ai Array of integers aiStudentId

af Array of float afquantity

ad Array of double adAmount

al Array of long integers alSample

ac Array of characters acEmpName

• Hungarian Notation: invented by Charles Simonyi from Microsoft

– It is a good programming practice that a vriable name should also indicate its
data type and its intended use.

– Example: if there is a variable ‘Age’ which is of type integer, then it should be
declared as ‘iAge’.

31-Dec-13 10© BVRIT – vCAP

Importance of Following Coding

Standards

• The coding standards may differ from project to project

• This may also vary from customer to customer

• Every company prepares its own coding standards

• Adhering to coding standards has the following advantages:

– Improves the readability of the program

– Improves the clarity of the program

– Makes a person to understand the program without any difficulty

– Makes it easy to debug and maintain the program

31-Dec-13 11© BVRIT – vCAP

File Header Block

• All source and header files must contain at the beginning of file, a section

providing information about the source or the header file

• Format:

/***

**

* File : <filename>

* Description : <description>

* Author : <author> <company>

* Version : <version number>

* Date : <Date>

**

*/

• Here the description should be a brief summary of what the code in the file does
31-Dec-13 12© BVRIT – vCAP

12/31/2013

3

File Footer Block

• All files should have this footer at the end of the file

/***

* End of <filename>

***/

31-Dec-13 13© BVRIT – vCAP

Function Header Block

• All functions (or methods) in the C files should be preceded by a comment block

• Format:

/***

**** Function: <Function Name>

* Description: <Overview of the function>

* Input Parameters:

* <Parameter 1> – <brief description>

* <Parameter 2> - <brief description>

*

* Returns : <Return values both in case of success and

* error conditions if the function returns something>

**

***/

31-Dec-13 14© BVRIT – vCAP

General Commenting Guidelines

• The ratio of code to comments should be 10 : 3 (30% should be comments)

• Whenever there is a block of code which is doing something complex, sufficient amount

of comments should be put in to explain

• Comments should be current and up to date

– Every time code is changed, care should be taken to update comments as well

– This applies to both File, Function headers and Comments in code as well

• Comment should not be in the same line as the code

• Use only C Style comments (/* This is a line of comment */)

31-Dec-13 15© BVRIT – vCAP

Indentation of Code

• Indentation is the practice by Software Engineers to use spaces or tabs consistently in

every line of code to group lines together based on their scope for easy readability

• An indented code looks better and can be understood easily

Ex:

#include<stdio.h>

void main ()

{

float a=10, b=5;

printf(“”%f”,a*b);

}

Product of two numbers.

����Well Indentated code

31-Dec-13 16© BVRIT – vCAP

Programming and Testing:

Functions

31-Dec-13 17© BVRIT – vCAP

Functions

• A function is a section of a program that performs a specific task

• A larger problem can be subdivided into smaller ones and by solving these sub

problems we arrive at the solution for the larger problem.

• Solving a problem using different functions makes programming much simpler

with fewer defects

31-Dec-13 18© BVRIT – vCAP

12/31/2013

4

Modular Programming - Manageable

Huge Book of

3000 pages

Same book

published in
several volumes.

Easily

manageable

31-Dec-13 19© BVRIT – vCAP

BOOK

Vol 1

Vol 2

Vol 3 Vol 2

Vol 4Vol 3

Divide and Conquer approach

31-Dec-13 20© BVRIT – vCAP

Non Modular Programming ApproachA bug in the

program(in
the

specified

part)

Whole

object
undergone

diagnose

and testing
A non-

modular
Program

31-Dec-13 21© BVRIT – vCAP

Understanding Functions - Modular

A bug in

the
program

The

specified
part

separated

Either

replaced /
repaired

Modular

Program

31-Dec-13 22© BVRIT – vCAP

Why functions?

• Use Top Down Approach to analyse Banking Operations(Customer Operations)

Cash deposit Creating Account Enquiry

31-Dec-13 23© BVRIT – vCAP

Advantages of Functions (1 of 3)
• The functions can be developed by different people and can be combined together as

one application

• Easy to code and debug

• Functions support reusability. That is, once a function is written it can be called from

any other module without having to rewrite the same. This saves time in rewriting the

same code.

• Since the functions can be written by different people, the overall application

development time will be less.

31-Dec-13 24© BVRIT – vCAP

12/31/2013

5

Advantages of Functions (2 of 3)

Work Allotment

Application Development

James working on

enquiry module

Susan working on cash

withdrawal module

George working on

cash deposit module

Code Integration

31-Dec-13 25© BVRIT – vCAP

Advantages of Functions (3 of 3)

James working on

enquiry module

Susan working on cash

withdrawal module

Check Account

Balance Function

Developed Reused

31-Dec-13 26© BVRIT – vCAP

Identifying Functions

• The first step in solving a large problem is identification of sub problems.

• In C programming terms, the sub problems can be viewed as functions

• Once the functions are identified, solving the problem becomes easy.

31-Dec-13 27© BVRIT – vCAP

Identifying Functions

• Problem statement

– In an automobile company salaries are delayed every month due to the manual

calculations of the pay roll.

– Employee dissatisfaction.

– Management decided to computerize the operation to remove this delay.

– i) When an employee joins the company, he/she will be fixed with a monthly

salary.

– Ii) He /she can work overtime and the overtime amount will be added with the

salary.

– Bonus will be announced every year for all categories of employees.

– In April, employees get the annual increment.

31-Dec-13 28© BVRIT – vCAP

Identifying Functions

Key Task

Sub Tasks

Monthly Salary

Calculation function

Overtime Calculation

function

Bonus Calculation

function

Annual Increment

Calculation function

31-Dec-13 29© BVRIT – vCAP

Classification of Functions

• Library functions

- Defined in the language

- Provided along with the compiler

Example: printf(), scanf() etc.

• User Defined functions

- Written by the user

Example: main() or any other

user-defined function

12/31/2013

6

Classification of Functions

• Main is a user defined function and it is the starting point of execution of a program.

• Library is a collection of commonly used functions. It is present on the hard disk and is

written for us by people who write compilers.

• Library functions need not be written by the user whereas the user defined functions

have to be written by the user.

• Libraries do not need main function to be defined in them as they are a collection of

functions.

Passing values to functions and returning values

• Functions are used to perform a specific task on a set of values

• Values can be passed to functions so that the function performs the task on these

values

• Values passed to the function are called arguments

• After the function performs the task, it can send back the results to the calling

function

• The value sent back by the function is called return value

• A function can return back only one value to the calling function

31-Dec-13 32© BVRIT – vCAP

Passing values to functions and returning values

Example:

int fnGreater(int iNum1, int iNum2);

int main(int argc, char *argv)

{

int iNumber1, iNumber2, iGreaterNo;

printf(“Enter two numbers to compare”);

scanf(“%d %d”, &iNumber1, &iNumber2);

iGreaterNo = fnGreater(iNumber1, iNumber2);

printf(“The greatest among two numbers is %d”, iGreaterNo);

return(0);

}

int fnGreater(int iNum1, int iNum2) {

if(iNum1 > iNum2)

{ return(iNum1);}

else

{ return(iNum2);}

}

Function
Prototype

Function Definition

Function Call

31-Dec-13 33© BVRIT – vCAP

Coding Standards for Writing

Functions (1 of 2)

• A function name should be preceded by fn

• The first character in the function name should be written in upper case

– Every subsequent word in the function name should start with an upper case

alphabet

• Example:

fnFactorial

fnItemDisplay

31-Dec-13 34© BVRIT – vCAP

Coding Standards for Writing

Functions (2 of 2)

• The function should begin with a header which describes about the function. It is

written as follows:

/***

* Function: fnFactorial()

* Description: Accepts an integer and finds the

* factorial

* Input Parameters:

* int - Number for which factorial to be found

* Returns: int - Factorial of the given integer

***/

31-Dec-13 35© BVRIT – vCAP

Elements of a Function

� Function Declaration or Function Prototype :

− The function should be declared prior to its usage

� Function Definition :

− Implementing the function or writing the task of the function

− Consists of

• Function Header

• Function Body

� Function Invocation or Function call:

− To utilize a function’s service, the function have to be invoked (called)

31-Dec-13 36© BVRIT – vCAP

12/31/2013

7

Declaring Function Prototypes (1 of 2)

• A function prototype is the information to the compiler regarding the user-defined

function name, the data type and the number of values to be passed to the function

and the return data type from the function

• This is required because the user-defined function is written towards the end of the

program and the ‘main’ does not have any information regarding these functions

• The function prototypes are generally written before ‘main’. A function prototype

should end with a semicolon

31-Dec-13 37© BVRIT – vCAP

Declaring Function Prototypes (2 of 2)

• Function Prototypes declare ONLY the signature of the function before actually

defining the function

• Here signature includes function name, return type, list of parameter data types and

optional names of formal parameters

• Syntax:

return_data_type FunctionName (data_type arg1,

data_type arg2,...,data_type argn);

• Example:

int fnValidateDate(int iDay,int iMonth, int iYear); (OR)

int fnValidateDate(int, int, int);

31-Dec-13 38© BVRIT – vCAP

Writing User-Defined Functions

• A function header and body looks like this:

Return-data-type function-name(data-type argument-1,

data-type argument-2,….)

{

/* Local variable declarations */

/* Write the body of the function here */

Statement(s);

return (expression);

}

• The return data type can be any valid data type

• If a function does not return anything then the ‘void’ is the return type

• A function header does not end with a semicolon

• The ‘return’ statement is optional. It is required only when a value has to be returned

31-Dec-13 39© BVRIT – vCAP

Writing User-Defined Functions (1 of 3)

Return data
type

Arguments
(Parameters)

Function
header

Can also be written as return isum;

Function
Body

int fnAdd(int iNumber1, int iNumber2)

{

/* Variable declaration*/

int iSum;

/* Find the sum */

iSum = iNumber1 + iNumber2;

/* Return the result */

return (iSum);

}

31-Dec-13 40© BVRIT – vCAP

Writing User-Defined Functions (2 of 3)

void fnDisplayPattern(unsigned int iCount)

{

unsigned int iLoopIndex;

for (iLoopIndex = 1;iLoopIndex<=iCount;iLoopIndex++)

{

printf(“*”);

}

/* return is optional */

return;

}

Prints ***

31-Dec-13 41© BVRIT – vCAP

Writing User-Defined Functions

(3 of 3)
int fnAdd(int iNumber1, int iNumber2)

{

/* Return the result*/

return (iNumber1 + iNumber2);

}

/* Function to display “vCAP Cell.” */

void fnCompanyNameDisplay()

{

printf(“vCAP Cell.”);

}

31-Dec-13 42© BVRIT – vCAP

12/31/2013

8

Returning values

• The result of the function can be given back to the calling functions

• ‘return’ statement is used to return a value to the calling function

• Syntax:

return (expression) ;

• Example:

return(iNumber * iNumber);

return 0;

return (3);

return;

return (10 * i);

31-Dec-13 43© BVRIT – vCAP

Calling User-Defined Functions (1 of 2)

• A function is called by giving its name and passing the required arguments

• The constants can be sent as arguments to functions

/* Function is called here */

iResult = fnAdd(10, 15);

• The variables can also be sent as arguments to functions

int iResult,iNumber1=10, iNumber2=15;

/* Function is called here */

iResult = fnAdd(iNumber1, iNumber2);

31-Dec-13 44© BVRIT – vCAP

Calling User-Defined Functions (2 of 2)

• Calling a function which does not return any value

/* Calling a function */

fnDisplayPattern(15);

• Calling a function that do not take any arguments and do not return anything

/* Calling a function */

fnCompanyNameDisplay();

31-Dec-13 45© BVRIT – vCAP

Function Terminologies

Function Prototype

Function Call

Statement

Function Definition

Calling Function

Called

Function

void fnDisplay() ;

int main(int argc, char **argv)

{

fnDisplay();

return 0;

}

void fnDisplay()

{

printf(“Hello World”);

}

31-Dec-13 46© BVRIT – vCAP

How Functions Work?

main()

Function Function Function
callcallcall

User defined
function

31-Dec-13 47© BVRIT – vCAP

Formal and Actual Parameters

• The variables declared in the function header are called as formal parameters

• The variables or constants that are passed in the function call are called as actual

parameters

• The formal parameter names and actual parameters names can be the same or

different

31-Dec-13 48© BVRIT – vCAP

12/31/2013

9

Functions – Example (1 of 2)

Actual Arguments

Function Prototype

int fnAdd(int iNumber1, int iNumber2);

int main(int argc, char **argv) {

int iResult,iValue1=5, iValue2=10;

/* Function is called here */

iResult = fnAdd(iValue1, iValue2);

printf(“Sum of %d and %d is %d\n”,iValue1, iValue2,iResult);

return 0;

}

31-Dec-13 49© BVRIT – vCAP

Functions – Example (2 of 2)

Return value

Formal Arguments

/* Function to add two integers */

int fnAdd(int iNumber1, int iNumber2)

{

/* Local variable declaration*/

int iSum;

iSum = iNumber1 + iNumber2; /* Find the sum */

return (iSum); /* Return the result */

}

31-Dec-13 50© BVRIT – vCAP

Example – Finding the sum of two numbers using functions (No

parameter passing and no return)

#include< stdio.h >

void fnSum();

int main(int argc, char **argv) {

fnSum();

return 0;

}

void fnSum() {

int iNum1,iNum2,iSum;

printf("\nEnter the two numbers:");

scanf("%d%d",&iNum1,&iNum2);

iSum = iNum1 + iNum2;

printf("\nThe sum is %d\n",iSum);

}

31-Dec-13 51© BVRIT – vCAP

Example – Finding the sum of two numbers using functions

(parameter passing)

#include< stdio.h >

void fnSum(int iNumber1, int iNumber2);

int main(int argc, char **argv) {

int iNumber1,iNumber2;

printf("\nEnter the two numbers:");

scanf("%d%d",&iNumber1,&iNumber2);

fnSum(iNumber1,iNumber2);

return 0;

}

void fnSum(int iNum1,int iNum2){

int iSum;

iSum=iNum1 + iNum2;

printf("\nThe sum is %d\n",iSum);

}

31-Dec-13 52© BVRIT – vCAP

Example – Finding the sum of two numbers using functions

parameter passing and returning value)

#include< stdio.h >

int fnSum(int iNumber1, int iNumber2);

int main(int argc, char **argv){

int iNumber1,iNumber2,iSum;

printf("\nEnter the two numbers:");

scanf("%d%d",&iNumber1,&iNumber2);

iSum = fnSum(iNumber1,iNumber2);

printf("\nThe sum is %d\n",iSum);

return 0;

}

int fnSum(int iNum1,int iNum2){

int iTempSum;

iTempSum=iNum1 + iNum2;

return iTempSum;

}
31-Dec-13 53© BVRIT – vCAP

Function Calls and Stack (1 of 5)

• A stack is a Last In First Out (LIFO) arrangement of memory in which the item that is

added last is the one to be removed first

• Items are added and removed only at one end called as top of the stack

• Inserting an item in to the stack is called as PUSH and removing an item from the

stack is called as POP

Added first and to be

removed last

Added last and to be

removed first

12/31/2013

10

Function Calls and Stack (2 of 5) Function Calls and Stack (2 of 5)

Function Calls and Stack (3 of 5)

Local variables of function

Arguments to function

User-Defined Function

Local variables of main

Arguments to main

Function main

STACK

Function calls and Stack (4 of 5)

/* Find the sum of two integers */

void fnSumPrint(int iValue1, int iValue2);

int main(int argc, char **argv)

{

int iNumber1=10, iNumber2=20;

fnSumPrint(iNumber1,iNumber2);

return 0;

}

void fnSumPrint(int iValue1, int iValue2)

{

int iResult;

iResult = iValue1 + iValue2;

printf(“%d”,iResult);

}

31-Dec-13 58© BVRIT – vCAP

How a function call reflects on

program stack

31-Dec-13 59© BVRIT – vCAP

Scope of Variables

• The scope of variables refers to that portion of the program where the variables

can be accessed

• They are accessible in some portion of the program and in the other they are not

accessible

• scope of a variable defines the portion of the program in which the set of

variables can be referenced and manipulated

• When a variable is required in a program, it can be declared as:

– Local variable

– Global variable

31-Dec-13 60© BVRIT – vCAP

12/31/2013

11

Local Variables (1 of 2)

• The variables that are declared inside a function are called as local variables

• The scope is only within the function in which they are declared

• Local variables cannot be accessed outside the function in which it is declared

• Local variables exist in the memory only till the function ends

• The initial values of local variables are garbage values

31-Dec-13 61© BVRIT – vCAP

Local Variables (2 of 2)

Variable ‘iResult’ is
local to function

‘fnSumPrint’

Variables ‘iNumber1’
and ‘iNumber2’ are

local to function
‘main’

/* Find the sum of two integers */

void fnSumPrint(int iValue1, int iValue2);

int main(int argc, char **argv)

{

int iNumber1=10, iNumber2=20;

fnSumPrint(iNumber1,iNumber2);

return 0;

}

void fnSumPrint(int iValue1, int iValue2)

{

int iResult;

iResult = iValue1 + iValue2;

printf(“%d”,iResult);

}

31-Dec-13 62© BVRIT – vCAP

Global Variables (1 of 2)

• The variables that are declared outside all the functions (above ‘main’) are called

as global variables

• These variables can be accessed by all the functions

• The global variables exist for the entire life-cycle of the program

• The global variables are by default initialized to zero

• Coding Standard:

– Each global variable should start with the alphabet ‘g’

– Example:

int giValue;

float gfSalary;

31-Dec-13 63© BVRIT – vCAP

Global Variables (2 of 2)

Variable ‘iResult’ is
local to function

‘fnSumPrint’

Global variables

/* Find the sum of two integers */

void fnSumPrint(int iValue1, int iValue2);

int giNumber1,giNumber2;

int main(int argc, char **argv)

{

giNumber1=10;

giNumber2=20;

fnSumPrint();

return 0;

}

void fnSumPrint()

{

int iResult;

iResult = giNumber1 + giNumber2;

printf(“%d”,iResult);

}

31-Dec-13 64© BVRIT – vCAP

Difference between Local and Global Variables

• Since every function is to act as an independent black box, the

variables declared inside one function are not available to another

function.

• By default, the scope of a variable is local to the function in which it is

declared. That is, a variable declared within a block is said to be local to

that block and cannot be accessed in any other block. If another

function needs to use this variable, it must be passed as a parameter to

that function.

• A variable that is declared outside of all functions is a global variable.

• Global variable value can be accessed and modified by any statement

in an application.

31-Dec-13 65© BVRIT – vCAP

Difference between Local and Global Variables

• The lifetime of the global variable is the same as that of the program

itself; therefore the memory allotted to the global variable is not

released until the program execution is completed. .

• An important distinction between local variables and global variables is

how they are initialized.

• Global variables are initialized to zero.

• Local variables are undefined. They will have whatever random value

happens to be at their memory location.

• Automatic, or local, variables must always be initialized before use. It is

a serious error, a bug, to use a local variable without initialization.

31-Dec-13 66© BVRIT – vCAP

12/31/2013

12

Difference between Local and Global Variables

• When inside a function, a local variable has the same name as a global variable

(iSameName, for example), the local variable gets precedence to the global variable.

• Storing variables - Stack and Heap

• When functions are in execution, memory is allocated from the stack for variables that

are referenced in a function. This storage is released as soon as the function completes

the execution.

• The variables declared inside a function (i.e. all the local variables) are allocated on the

stack, as part of the function's stack frame.

• This stack frame is wiped out once the function exits. All the local variables go away

when the stack frame is wiped out.

• Global variables, that are visible to every single function in the program, are stored on

the heap memory. Since they are accessible to every program the lifetime of global

variables is the lifetime of the program.

31-Dec-13 67© BVRIT – vCAP

#include <stdio.h>

int giGlobalVar;

int iSameName;

int fnFunc();

void main(int argc, char **argv) {

int iLocalVar;

iSameName = 1;

giGlobalVar = 2;

iLocalVar = 3;

printf("Starting in main : ");

printf(" iGlobalVar = %d, iLocalVar = %d,

iSameName = %d \n\n", giGlobalVar,

iLocalVar, iSameName);

fnFunc();

printf("Returned to main: ");

printf(" iGlobalVar = %d, iLocalVar = %d,

iSameName = %d \n\n", giGlobalVar,

iLocalVar, iSameName);

}

int fnFunc() {

int iLocalVar;

int iSameName;

giGlobalVar = 20;

iLocalVar = 50;

iSameName = 10;

printf("In SubFunc..");

printf(" iGlobalVar = %d, iLocalVar

= %d, iSameName = %d \n\n",

giGlobalVar, iLocalVar,

iSameName);
}

31-Dec-13 68© BVRIT – vCAP

#include <stdio.h>

int giGlobalVar;

int iSameName;

int fnFunc();

void main(int argc, char **argv) {

int iLocalVar;

iSameName = 1;

giGlobalVar = 2;

iLocalVar = 3;

printf("Starting in main : ");

printf(" iGlobalVar = %d, iLocalVar = %d,

iSameName = %d \n\n", giGlobalVar,

iLocalVar, iSameName);

fnFunc();

printf("Returned to main: ");

printf(" iGlobalVar = %d, iLocalVar = %d,

iSameName = %d \n\n", giGlobalVar,

iLocalVar, iSameName);

}

int fnFunc() {

int iLocalVar;

int iSameName;

giGlobalVar = 20;

iLocalVar = 50;

iSameName = 10;

printf("In SubFunc..");

printf(" iGlobalVar = %d, iLocalVar

= %d, iSameName = %d \n\n",

giGlobalVar,

iLocalVar,iSameName);
}

31-Dec-13 69© BVRIT – vCAP

Disadvantages of Global Variables

• Lifetime of global variables is throughout the program

– Hence usage of global variables leads to wastage of memory

• Scope of the global variable is throughout the program

– Hence more than one function can modify the value of the global variable.

This makes debugging difficult.

31-Dec-13 70© BVRIT – vCAP

What is the output of the following code snippet?

The output is:

Value of Local = <some garbage value>

Value of Global = 0

int giGlobal ;

int main(int argc, char **argv) {

int iLocal;

printf(“ Value of Local = %d \n,

Value of Global = %d”, iLocal,

giGlobal);

return 0;

}

31-Dec-13 71© BVRIT – vCAP

Program stack and heap

• During execution of a program, the storage of program and data

is as follows:

– The executable code is stored into the code /Text segment

– The global variables are stored into data segment

– The heap memory is used for dynamic memory allocation The local

variables are stored into the stack

• Heap: A section of memory within the user job area that

provides a capability for dynamic allocation (Not discussed in this

course)

12/31/2013

13

Parameter Passing Techniques

• When a function is called and if the function accepts some

parameters, then there are two ways by which the function

can receive parameters

– Pass by value

– Pass by reference

31-Dec-13 73© BVRIT – vCAP

Pass by Value

• When parameters are passed from the called function to a

calling function, the value of the actual argument is copied

onto the formal argument

• Since the actual parameters and formal parameters are stored

in different memory locations, the changes in formal

parameters do not alter the values of actual parameters

31-Dec-13 74© BVRIT – vCAP

Pass by Value

Call of function fnUpdateValues

main() fnUpdateValues()

End of function fnUpdateValues

31-Dec-13 75© BVRIT – vCAP

Pass by Reference

• Addresses of actual parameters are passed

• The function should receive the addresses of the actual

parameters through pointers

• The actual parameters and formal parameters are referencing

the same memory location, so the changes that are made

become permanent

31-Dec-13 76© BVRIT – vCAP

Pass by Reference (4 of 5)

Call of function fnUpdateValues

main() fnUpdateValues()

End of function fnUpdateValues

31-Dec-13 77© BVRIT – vCAP

Difference between pass by value and pass by

reference

Pass by value Pass by reference

Consumes more memory space
because formal parameter

also occupies memory space.

Consumes less memory space.
Because irrespective of the actual

arguments data type, each pointer
occupies

only 4 bytes.

Takes more time for execution,
because the values are copied

Takes less time because no values are
copied

31-Dec-13 78© BVRIT – vCAP

12/31/2013

14

Passing array elements to a function – Pass by

value
• There are two ways to pass array elements to a function.

– Pass by Value

– Pass by Reference

/* Demo of Pass by Value */

void fnDisplay(int iMarks);

int main(int argc, char **argv) {

int iIndex;

int aiMarks[] = {55,65};

for(iIndex=0;iIndex<=1;iIndex++) {

fnDisplay(aiMarks[iIndex]);

}

return 0;

}

void fnDisplay (int iMarks) {

printf(“%d” , iMarks);

}

iIndex=0

55

iMarks=55

55

iIndex=1

65

iMarks=65

65

31-Dec-13 79© BVRIT – vCAP

Passing arrays to a function-Pass by reference

• Arrays are always passed by reference.

• While passing arrays to a function, base address of 0th element gets passed.

• Any changes made to the array by the called function are reflected back into the

original array in calling function.

Ex: void fnFindSq (int []); /* Function prototype*/

int main(int argc, char **argv) {

int iIndex;

int aiNum[] = {5,6,10};

fnFindSq(aiNum , 3); /* Function Call */

return 0;

}

void fnFindSq (int aiSqNum[], int iMax) {

int iCnt;

for(iCnt = 0; iCnt < iMax; iCnt++)

aiSqNum[iCnt] = aiSqNum[iCnt] * aiSqNum[iCnt];

}

31-Dec-13 80© BVRIT – vCAP

Passing arrays to a function-Pass by reference

• While passing a whole array to a function, base address of 0th

element gets passed

• Any changes made to the array by the called function are

reflected back into the original array in calling function

31-Dec-13 81© BVRIT – vCAP

Passing arrays to a function-Pass by reference (2 of

2)
/* Function Prototype */

void fnFindSq (int aiSqNum[], int iMax);

int main(int argc, char **argv) {

int iIndex;

int aiNum[] = {5,6,10};

fnFindSq(aiNum , 3); /* Function Call */

return 0;

}

void fnFindSq (int aiSqNum[], int iMax) {

int iCount;

for(iCount = 0; iCount < iMax; iCount ++){

aiSqNum[iCount] = aiSqNum[iCount] *

aiSqNum[iCount];

}

}

31-Dec-13 82© BVRIT – vCAP

Summary

• The section of a program that performs a specific task is called as a function

• Advantages of functions

– Reusability

– Modularity

– Easy to code and debug

– Reduced application development time

• To Identify the functions, identify the sub problems to be solved

• Function prototypes should be exactly same as the function header

• The variables declared in the function header are called as formal parameters

• The variables and the constants that are passed in the function call are called as actual

parameters

• Scope of variables: The portion of the program where the variables can be accessed

– Local variables: The variables that are declared inside a function

– Global variables: The variables that are declared outside all the functions

• Parameter passing techniques

– Pass by value: The actual values are passed to the function

– Pass by reference: The address of the variables are passed to the function

• When arrays are passed as arguments to the function they are passed by reference

31-Dec-13 83© BVRIT – vCAP

Vishnu Career Advancement Program

C Programming Students Manual

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. C LANGUAGE .. 1

2.1 ANSI C ... 1

3. NAMING CONVENTIONS... 1

3.1 Program files ... 1

3.2 Functions .. 3

3.3 Variables ... 3

4. DATA STRUCTURES ... 4

4.1 Define Structures as Typedefs .. 4

4.2 Structure Tags ... 4

5. PROGRAMMING CONVENTIONS ... 5

5.1 Source files ... 5

5.2 Header Files .. 5

5.3 Variables ... 5

5.4 Functions .. 7

5.5 Braces and Indentation ... 7

5.6 Other Issues .. 8

6. DOCUMENTATION ... 9

6.1 Source header and modification history .. 9

6.2 Procedure headers ... 9

6.3 In-line and block comments .. 10

1 of 10

1. INTRODUCTION

The goal of this standards document is to promote error free source code that is readable,

usable, maintainable, and portable. This guide defines a particular style, offers some

justification for it, and presents examples where appropriate.

This guide is designed to serve as a reference for experienced library developers, and to

acquaint new developers with the standard.

Each project may be segregated into functional phases, depending on customer

requirements and development sequencing.

2. C LANGUAGE

2.1 ANSI C

All code must be composed of valid ANSI C statements with no reliance on particular

language constructs which might cause platform/compiler dependence.

3. NAMING CONVENTIONS

3.1 Program files

A 8.3 character file-name format can be used to name all program files. Program files

include:

Source files

Header files

3.1.1 Naming source files

The initial 8 characters for source files can be made up as follows:

<application name><module name>

Application names should contain a maximum of 4 small letters (e.g. xadm).

Module names can be arrived at keeping in mind the following points :

The module name could clearly identify the functional area which the module addresses.

E.g.: xadmio.c, mdmSave.c, mdmClone.c, mdmu.c.

The module name could identify a particular user interface/messaging object which the

module addresses. E.g.: mdmIcon.c, udmmBar.c, udmmFont.c, mdmFldId.c.

The module name could just describe if it deals with user interface or backend. E.g.:

udmmBknd.c

2 of 10

The main module (containing function main() or entry point to the application) should

be <application_name>.c. E.g.. xadm.c, mdm.c.

The naming conventions for each of these kinds of applications/libraries are listed in the

following tables.

Table 3 - Source file naming convention for applications/libraries

Name Description

xadm.c Main module

xadmio.c Module containing functions performing I/O using API.

xadmp.c Module containing page routines supported by the application.

xadmu.c Module containing utility routines (typically to assist I/O functions

defined in xadmio.c - processing of data after I/O)

udmmBknd.c Module containing code for interfacing with the application

infrastructure.

Note: The link between function names and the source file names should be

maintained, so that given a function name it is easy to determine which source file

contains its definition.

E.g.: xadm which is an API-based application could possibly have a file named

xadmio.c (all the input/output routines) . So all the function names could start as

xadmio_readline().

3.1.2 Header files

The initial 8 characters for header files should be made up as follows:

<application name><extension>

Application names should contain a maximum of 4 small letters (e.g. xadm)

There should always be a header file called <application_name>.h. All the other header

files can be included via this header file.

Extensions will be chosen to clearly indicate what the header file contains.

The header file naming conventions for pure API-based applications/libraries are given in

the table below:

Table 2 : Header file naming convention for API applications/libraries (short filenames)

Name Description

xadm_d Definition file containing structure

definitions and typedefs for the structures

xadm_c Constants and macros

xadm_f Function Prototypes

xadm_p Portability File

An optional ‘_p’ can be appended to ‘_d’, ‘_c’ and ‘_f’

extensions to indicate ‘portability’ related header files.

3 of 10

3.2 Functions

• Function name can begin with module name followed by a description (e.g.

xadm_save_all, mdm_init_jazz_engine). The general logic to be applied while

naming functions is
<application + module_name>_<operation>_<object>

• Only functions which are not called explicitly anywhere can begin without a

module name. Typically notify ,issue functions ,event handlers etc. which are

assigned to function pointers or are called intrinsically come under this category.

(e.g. set_domain_background_color_issue).

• Function Declaration−−External to File

Functions called from outside of a file must be defined by prototypes in an include

file (for that file). This implies that prototypes should never occur in C source files (.c

files); instead, the .c file should #include the appropriate include file. For

example, if the file cashflow.c defines the functions GtoFree CFL and Gto

NewCFL, the include file cashflow.h should contain:

 TcashFlowList *GtoNewCFL

 (TDate *dates, /* (I) Dates */
 double *amounts, /*(I) Amounts */
 int numItems); /*(I)Length */
 void GtoFreeCFL (TCashFlowList *);

/* Destructor */

• Code Reuse

Any time there is a need for more than a couple lines of code in more than one

place, the code must be placed in one function or macro which is then called from

multiple places.

• Function Size

In general, functions must not be longer than a page or two. Nesting of for,

while, do, and if statements should not be more than four levels deep.

• Function Order Within a File

Within a file, higher level functions (those which call other functions) must come

first.

3.3 Variables

• All variables are to be named in Hungarian Notation using alpha-numeric

characters only. The data type is prefixed to the variable name based on the

following table :

4 of 10

Table 1 : C variable naming convention

Prefix Data type Example

1. i 1. int (signed and unsigned) 1. iIndex

2. c 2. char (signed and unsigned) 2. cOperator

3. f 3. function 3. fButtonNotify

4. d 4. double 4. dAskPrice

5. s 5. structure or typedef structure 5. sTradeGroup,

sEnv

6. p 6. pointer 6. pHndl

7. pts 7. pointer to ‘type defined’ structure 7. ptsTradeGroup

8. pc 8. pointer to character array 8. pcCharacterArray

9. pd 9. pointer to double 9. pdBidPrice

10. pi 10. pointer to integer 10. piIndexToArray

11. pv 11. pointer to void 11. pvVoid

12. a 12. function arguments whose value will be

returned to its caller.

12. aHndl

13. ac 13. array of char or address of char 13. acOperator

14. ai 14. array of integers or address of integer 14. aiErrorCode

15. ad 15. array of double or address of double 15. adAskPrice

16. ap 16. array of pointers or address of pointer 16. apNameList

For register variables, add ‘Reg’ after the prefix (eg. iRegLoopCount)

4. DATA STRUCTURES

4.1 Define Structures as Typedefs

All structures must be defined as a typedef. For example:

 typedef struct

 {

 int fNumItems;

 TDate *fArray;
 } TDateList;

4.2 Structure Tags

All structures must have a tag which names the structure preceded by a single

underscore. In other words, the previous example should really look like this:

 typedef struct _TDateList /* Tag here */

 {

 int fNumItems;
 TDate *fArray;

 } TDateList;

5 of 10

5. PROGRAMMING CONVENTIONS

5.1 Source files

The source file structure should generally adhere to the following layout :

Comment block for module description (see section : 6.1)

All source files should be surrounded by

#ifndef <source_file_name>_C_INCLUDED /* eg. MDM_C_INCLUDED */

#define <source_file_name>_C_INCLUDED

::::

::::

#endif /* At the end of file */

#include header files

Macros (#defines) block to define all macros specific to this source module

Static Globals block. The order is C data types, application data types followed by user

defined data types

Static function prototypes block

Functions definitions.

5.2 Header Files

All header files should be surrounded by

#ifndef <header_file_name>_H_INCLUDED /* eg. OS_H_INCLUDED */

#define <header_file_name>_H_INCLUDED

::::

:::: (contents of header file)

#endif

5.3 Variables

The following conventions should be followed while naming and locating the C variables

:

Variables should be declared individually, one per line.

Correct int iIndex;

int iSeconds;

Incorrect int iIndex,
iSeconds;

6 of 10

Variables should be named as defined in section 3.3

The format for defining pointers is :

<type><space>*<one or more spaces><pointer variable>;

E.g.:

int * pCode;

char * pcBuf;

Static variables to be defined in the source files only

Global variables should be always be defined as
EXTERN struct tsNCharcb sOpenRoutineName;

where EXTERN is defined as
#ifdef <application_name>_C_INCLUDED
#define EXTERN

#elseif

#define EXTERN extern

#endif

Global variables should not be initialized during declaration

Global variables should be initialized separately in a initialization routine

Initialize only one variable per statement.

Correct iIndex = 0;

iSeconds = 0;

Incorrect iIndex = iSeconds = 0;

Separate the “tokens” in the intended manner

e.g. write y = x / *p; rather than y=x/*p;

(*p is the value pointed to by p, in the second case everything beyond x is treated as

comment and the intent is lost)

Do not assume automatic initialization of Global variables

Avoid using static variables inside functions unless it is absolutely necessary

Register variables should be used only for counters for large loops. Preferably let the

compiler handle register optimization

Explicitly modify variables which occur more than once in one statement; not as part of

the statement itself

Correct iXXX = piYYY[iIndex] + piZZZ[iIndex];

iIndex++;

Incorrect iXXX = piYYY[iIndex] + piZZZ[iIndex++];

7 of 10

5.4 Functions

The following conventions should be followed while writing functions

Prototypes of static functions should be included in the source files only

Arguments should be listed one per line in a function’s declaration and in its prototype

Example:

int read_emp_all (

 char acEmpNo[],

 char acEmpName[],

 float iEmpSalary

)

When a call to a function spans more than one line, each argument should be placed on

its own line

Upon success, a function should return an int whose value is set to OK, otherwise it

should return an int whose value is set to NOT_OK

The last argument to a function should be an int * for which dereferencing is valid

only when the function returns NOT_OK

Return arguments should be enclosed in parenthesis

Functions should be written in pairs - one to do something an the other to undo it.

5.5 Braces and Indentation

Left braces should appear five spaces indented from the beginning of the previous line

A right brace should appear in the same column as its matching left brace

Other statements should appear on the same line as a brace except at function level where

the left brace appears on the first column and the statements appear five spaces indented

from the left brace

When multiple arguments of a function call are written one per line, all the arguments

should appear on the same column as the first argument. For pointer data types, the * is

placed immediately after the data type with a single space between them. The variable

names should be aligned to the same column.

int xadm_add_to_socket_list(tsDialogInfo * ptsDialogInfo,

 tsNCharcb * ptsSocketName,

 tsNCharcb * ptsSocketAddr,

 int * aiCode)

8 of 10

5.6 Other Issues

The following issues should be observed carefully to write portable and understandable

code

Do not assume the sizes of various data types. Always use the sizeof operator. An integer

on a 16-bit operating system may be 2 bytes while on a 32-bit operating system, it may be

4 bytes.

Use parentheses judiciously to make the code more readable

for e.g.

*sStatus.piErrorCode is less readable than

*(sStatus.piErrorCode)

If a statement appears over-parenthesized, break it up into multiple statements

goto statements should not be used

Do not use “break” to come out of loops; use flags instead

Always handle default in switch statements. Every case statement block

should have a break statement.

Correct switch(iItemType) {

 case TYPE_A :

 ...

 break;
 case TYPE_B :

 ...

 break;

 default :
 ...

 break;

 }

Incorrect switch (iItemType) {

 case TYPE_A :

 ...

 break;
 case TYPE_B :

 ...

 }

Avoid magic numbers. Always use #define or const to represent such numbers

Correct #define MAX_CLASS_SIZE 36

...
if (iClassSize < MAX_CLASS_SIZE)

 ...

Incorrect if (iClassSize < 36)
 ...

9 of 10

For frequently used strings, use a const char *. This is preferable to using

#define macro to declare constant strings.

Correct const char *pPrompt = “Press any key to

continue”;

...

printf(pPrompt);
...

printf(pPrompt);

...

printf(pPrompt);

Incorrect ...

printf(“Press any key to continue”);

...
printf(“Press any key to continue”);

...

printf(“Press any key to continue”);

6. DOCUMENTATION

Documentation is to be provided for the following purposes :

6.1 Source header and modification history

All source and header files will contain a section providing information about the source

or the header file. The format is given below

/* File : <filename>

 *

 * Description : <description>

 *

 * Author : <author> (Infosys Tech. Ltd., Bangalore)

 *

 * Started On : 6 June 1996

 *

 * Modification History :

 *

 * Date Name Change/Description

 * --

 * DDMMMYYYY xxxxxxx yyyyyyy yyyyy yyyyyyyyy yyyyy yyy yy yyy

 *

 */

The modification history should record any significant changes to the program logic.

6.2 Procedure headers

All function are preceded by a comment block which will be of the format given below

/******************** 80 characters wide ***************************

* Function : <Function Name>

*

* Description : <Overview of the function>

*

10 of 10

*

*

* Input Parameters :

*

*

*

*

*

* Returns :

*

*

*

* Globals :

*

*

*

* Static funcs : aaaaa()

*

* Extern funcs : bbbbb()

*

*

*

***/

6.3 In-line and block comments

In-line comments are discouraged. Provide in-line comments only if they are a must

Other comments should begin with the same indentation as the succeeding source code

and end on the 80th column

Blank lines occur before and after the comment blocks.

Avoid commenting individual statements. Instead comment a group of statements

explaining the logic

Avoid trivial comments like /* increment counter */

Vishnu Career Advancement Program

C Programming Assignment

1. Write a program to find whether the number entered by the user is prime

number or not. Extend this program to list all the prime numbers between

two given numbers.

2. Do the following for the user-entered number of students. Find the average

marks for a student of his marks in 3 subjects. Print whether he passed or

failed. A student will fail if his average is less than 50. Use for loop

3. Do the following for an unknown number of students. (User will explicitly

indicate when to terminate). Find the average marks for a student of his

marks in 3 subjects. Print whether he passed or failed. A student will fail if

his average is less than 50. Use While loop.

4. Write a program, that accepts a integer from the user and print the integer

with reverse digits. For eg: rev(1234) = 4321.

5. Find the sum of the digits of a given number.

6. Given three numbers, determine whether they can form the sides of triangle.

7. Write a program which allow to perform any of the following operations

on two 3*3 arrays

 a) Add Arrays.

 b) Multiply Arrays.

 c) Subtract Arrays.

Vishnu Career Advancement Program

Assessment Question – 1

1. Write a program that takes in three arguments, a start temperature (in Celsius),
an end temperature (in Celsius) and a step size. Print out a table that goes from

the start temperature to the end temperature, in steps of the step size; you do
not actually need to print the final end temperature if the step size does not
exactly match. You should perform input validation: do not accept start

temperatures less than a lower limit (which your code should specify as a
constant) or higher than an upper limit (which your code should also specify).
You should not allow a step size greater than the difference in temperatures.

(This exercise was based on a problem from C Programming Language).

Sample run:

 Please give in a lower limit, limit >= 0: 10

 Please give in a higher limit, 10 > limit <= 50000: 20

 Please give in a step, 0 < step <= 10: 4

 Celsius Fahrenheit

 ------- ----------

 10.000000 50.000000

 14.000000 57.200000

18.0 64.400000

2. Here's a simple help free challenge to get you started: write a program that
takes a file as an argument and counts the total number of lines. Lines are

defined as ending with a newline character.

Program usage should be “count filename.txt”

And
The output should be the line count.

3. In this challenge, given the name of a file, print out the size of the file, in bytes.
If no file is given, provide a help string to the user that indicates how to use the
program. You might need help with taking parameters via the command line or

file I/O in C++ (if you want to solve this problem in C, you might be interested
in this article on C file I/O).

4. Here is another mathematical problem, where the trick is as much to
discover the algorithm as it is to write the code: write a program to display
all possible permutations of a given input string--if the string contains

duplicate characters, you may have multiple repeated results. Input should
be of the form

Vishnu Career Advancement Program

Assessment Question – 1
permute string

and output should be a word per line.

Here is a sample for the input cat

cat

cta

act

atc

tac

tca

12/31/2013

1

C Programming – Level 2 and 3

12/31/2013 1© BVRIT – vCAP

ER/CORP/CRS/LA87 Ver. No.:3.0

12/31/2013 2© BVRIT – vCAP

Session Plan

• Recursive Functions

• Testing

• Debugging

• Code Review

• Some Exercises on control structures

• PF Project Discussion

12/31/2013 3© BVRIT – vCAP

Recursive Functions (1 of 7)

• When a function calls itself it is called as Recursion

• Many mathematical, searching and sorting algorithms, can be
simply expressed in terms of a recursive definition

• A recursive definition has two parts:

Base condition : When a function will terminate

Recursive condition :The invocation of a recursive call to the function

• When the problem is solved through recursion the source code
looks elegant

12/31/2013 4© BVRIT – vCAP

Recursive Functions (2 of 7)

/* Finding the factorial of an integer using a

recursive function */

int fnFact(int iNumber); /* Function Prototype */

int main(int argc, char **argv) {

int iFactorial;

iFactorial=fnFact(4);

printf("The factorial is %d\n",iFactorial);

return 0;

}

12/31/2013 5© BVRIT – vCAP

Recursive Functions (3 of 7)

int fnFact(int iNumber)

{

int iFact;

if (iNumber <= 1) {

return 1;

}

else {

iFact = iNumber * fnFact(iNumber - 1);

}

return iFact;

}

12/31/2013 6© BVRIT – vCAP

12/31/2013

2

Recursive Functions (4 of 7)

12/31/2013 7© BVRIT – vCAP

Recursive Functions (5 of 7)

• Find the output of the following code snippet when the
function is called as fnReverse(5);

void fnReverse(int iValue)

{

if (iValue > 0) {

fnReverse(iValue-1);

}

printf("%d\t",iValue);

}

Output will be 0 1 2 3 4 5

12/31/2013 8© BVRIT – vCAP

Recursive Functions (6 of 7)

• Find the output of the following code snippet

when the function is called as fnReverse();
int giValue = 5; /* Global Variable Declaration */

void fnReverse()

{

if (giValue > 0) {

giValue--;

fnReverse();

}

printf("%d\n",giValue);

}

12/31/2013 9© BVRIT – vCAP

Recursive Functions (7 of 7)

• Find the output of the following code snippet

when the function is called as fnReverse();

Output: Prints the string “tseT”

char gacString[] = "Test";

int giIndex = 0;

void fnReverse()

{

if (gacString[giIndex] != '\0') {

giIndex++;

fnReverse();

}

giIndex--;

if (giIndex >= 0){

printf("%c",gacString[giIndex]);

}

}

12/31/2013 10© BVRIT – vCAP

Unit Testing

“In God we trust; All else we test”

12/31/2013 11© BVRIT – vCAP

Objective of Testing

• Bug: An error or defect in software that causes

the program to malfunction

• Bugs in software often lead to frustration for the

end user of the software.

• Bugs in critical software, where financial

transactions and huge amounts of money are

involved may even lead to huge losses to the

customer

In Mission – critical software bugs may even

12/31/2013 12© BVRIT – vCAP

12/31/2013

3

Unit Testing (1 of 2)

• Each individual unit of code is tested to ensure

that it performs its intended functionality

• Unit tests are done on their respective modules

by Software Engineer who has written code

• Unit tests are created using some techniques

which ensure that all logical paths of the code

unit are tested and maximum number of errors 12/31/2013 13© BVRIT – vCAP

Unit Testing (2 of 2)

• Any defects found during unit testing are logged

in the Defect Tracking System (DTS) and they are

tracked till the defects are removed from the

code

• Test Case: A set of inputs, execution

preconditions, and expected outcomes

developed for a particular objective, such as to

exercise a particular program path or to verify 12/31/2013 14© BVRIT – vCAP

Documenting Test Cases (1 of 1)

• Very often test plans contain hundreds of test

cases and so it is essential to keep

documentation of test cases clear and in

simplest terms as possible

– Test Plan

Sl
No

Test case
name

Test Procedure Pre-
conditi

on

Expected
Result

Reference to
Detailed Design /

Spec Document

12/31/2013 15© BVRIT – vCAP

Documenting Test Cases (2 of 2)

• A test case name should be of the following

format.

<Module Name>_<Function Name>_<Test

Procedure>, where

– Module Name is the name of the module the test case tests

– Function Name is the name of the function or functionality the test case tests

– Test Procedure is a term or word which briefly represents what the test case is

trying to do

• Test Procedure (Condition to be tested):

Explains briefly but clearly, what the test case is

doing.

12/31/2013 16© BVRIT – vCAP

Types of Test Cases

• Test cases are of two types:

– Positive test case: A positive test case is one which is designed in such a way

that the program or module being tested succeeds. (A valid input is passed to

get a valid result.)

– Negative test case: A test case which is designed in such a way that the

program or module being tested gives appropriate error code on an invalid

input. (Usually an invalid input or condition is created in negative test cases.)

Negative test cases test the robustness of the program

12/31/2013 17© BVRIT – vCAP

Identifying Test Cases

• Boundary Value Analysis

• Equivalence Partitioning

• Logic Coverage

• Random Generation

12/31/2013 18© BVRIT – vCAP

12/31/2013

4

Boundary Value Analysis (1 of 7)

• A boundary value is one which indicates the

border (or the limit) of a value

• Test cases that explore boundary values have

the highest payoff in terms of detecting bugs,

as the most common errors occur at the
12/31/2013 19© BVRIT – vCAP

Boundary Value Analysis (2 of 7)

• For example if an input condition specifies that

the range of values of the input variable items

must be from 0 to 100, the boundary values

would be -1, 0,1,99,100 and 101

-1 0 1 99 100 101

12/31/2013 20© BVRIT – vCAP

Boundary Value Analysis (3 of 7)
/**/

* Function: fnFindGrade

* Description: Given the percentage score of student,

* assigns the grade of the student.

* Criteria for Grades:

* A - 80 to 100

* B+ - 73 to 79

* B – 65 to 72

* C – 55 to 64

* D – 0 to 54

* Z – for invalid grades (Score <0 or score >100)

* Input Parameters:

* int iPercentScore - Percentage scored by the student

* Char acGrade[] – Array containing the grade assigned

* Returns:None

***/

12/31/2013 21© BVRIT – vCAP

Boundary Value Analysis (4 of 7)
void fnFindGrade (int iPercentScore, char acGrade[]) {

if (iPercentScore >=80 && iPercentScore <=100)

{ strcpy(acGrade,”A”); }

else if (iPercentScore >=73 && iPercentScore <=79)

{ strcpy(acGrade,”B+”);}

else if (iPercentScore >=65 && iPercentScore <=72)

{ strcpy(acGrade,”B”); }

else if (iPercentScore >=55 && iPercentScore <=64)

{ strcpy(acGrade,”C”); }

else if (iPercentScore >=0 && iPercentScore <=54)

{ strcpy(acGrade,”D”); }

else

{ strcpy(acGrade,”Z”); }

}

12/31/2013 22© BVRIT – vCAP

Boundary Value Analysis (5 of 7)

• A score expressed in percentage can be only

between 0 and 100. Any value beyond 0 and

100 are considered as invalid and the function

should return the grade as ‘Z’

• To start with, let us test this function for the

12/31/2013 23© BVRIT – vCAP

Boundary Value Analysis (6 of 7)

Sl
No

Test case name Test Procedure Pre-
conditi

on

Expected
Result

Reference
to Detailed

Design /
Spec

Document

1 fnFindGrade_Mi
nusOne

Call fnFindGrade
with

iPercentScore = -
1

None “Z” should
be

assigned to
grade

(Negative
Test case)

fnFindGrad
e

2 fnFindGrade_0 Call fnFindGrade
with

iPercentScore = 0

None Grade “D”
should be

assigned

fnFindGrad
e

3 fnFindGrade_1 Call fnFindGrade
with

iPercentScore = 1

None Grade “D”
should be

assigned

fnFindGrad
e

12/31/2013 24© BVRIT – vCAP

12/31/2013

5

Boundary Value Analysis (7 of 7)

Sl
No

Test case name Test Procedure Pre-
conditi

on

Expected
Result

Reference
to Detailed

Design /
Spec
Document

4 fnFindGrade_99 Call fnFindGrade
with iPercentScore =

99

None Grade “A”
should be

assigned

fnFindGrad
e

5 fnFindGrade_100 Call fnFindGrade
with iPercentScore =

100

None Grade “A”
should be

assigned

fnFindGrad
e

6 fnFindGrade_101 Call fnFindGrade
with iPercentScore =

101

None “Z”
should be

assigned
to grade
(Negative

test case)

fnFindGrad
e

12/31/2013 25© BVRIT – vCAP

Equivalence Partitioning (1 of 4)

• This consists of dividing all possible inputs into

a set of classes, where either all inputs that fall

into a given class are valid or all are invalid.

Then selecting a few test cases from each class

is sufficient12/31/2013 26© BVRIT – vCAP

Equivalence Partitioning (2 of 4)

Sl
No

Test case name Test Procedure Pre-
conditi

on

Expected
Result

Reference to
Detailed

Design /
Spec
Document

1 fnFindGrade_E20 Call fnFindGrade with
iPercentScore = 20

None Grade “D”
should be

assigned

fnFindGrade

2 fnFindFrade_D48 Call fnFindGrade with
iPercentScore = 48

None Grade “D”
should be

assigned

fnFindGrade

3 fnFindGrade_C59 Call fnFindGrade with
iPercentScore = 59

None Grade “C”
should be

assigned

fnFindGrade

12/31/2013 27© BVRIT – vCAP

Equivalence Partitioning (3 of 4)

Sl
No

Test case name Test Procedure Pre-
conditio

n

Expected
Result

Reference to
Detailed

Design /
Spec
Document

4 fnFindGrade_B71 Call fnFindGrade with
iPercentScore = 71

None Grade “B”
should be

assigned

fnFindGrade

5 fnFindGrade_A90 Call fnFindGrade with
iPercentScore = 90

None Grade “A”
should be

assigned

fnFindGrade

12/31/2013 28© BVRIT – vCAP

Equivalence Partitioning (4 of 4)

Sl
No

Test case name Test Procedure Pre-
conditi

on

Expected
Result

Reference to
Detailed

Design /
Spec
Document

6 fnFindGrade_Invalid_
Minus30

Call fnFindGrade
with iPercentScore =

-30

None “Z”
should be

assigned
to grade
(Negative

Test case)

fnFindGrade

7 fnFindGrade_Invalid_
300

Call fnFindGrade
with iPercentScore =

300

None “Z”
should be

assigned
to grade
(Negative

Test case)

fnFindGrade

12/31/2013 29© BVRIT – vCAP

Logic Coverage (1 of 4)

• This technique aims to generate enough test

cases so that an appropriately defined coverage

criterion is met

• Criterion: Every statement in the program must

be executed at least once, every branch in the

program must be executed at least once, or

every path in the program must be executed at

least once

• Example:
– The User Interface for searching the address book should be very friendly and

12/31/2013 30© BVRIT – vCAP

12/31/2013

6

Logic Coverage (2 of 4)

12/31/2013 31© BVRIT – vCAP

Sl

No

Test case name Test Procedure Pre-

cond

ition

Expected Result Reference to

Detailed

Design

1 addrbook_all_blank All the fields are

kept blank and

click on ‘Search…’

None Address book must

display an Error

message and prompt

user to enter at least

one field.

(Negative Test case)

Address book

Module

2 addrbook_empno_ok Type in an

employee numbe r

(Ex: 7342) and then

click on ‘Search…’

None Address book must

fetch one (only one)

entry of the person

with that employee

number

Address book

Module

3 addrbook_empno_fail Type in an invalid

employee number

and then click

‘Search…’

None Address book must

fetch zero records

and display that

record is not found.

(Negative Test case)

4 addrbook_email_full Type in a full e -

mail id (Ex:

nagendra_setty)

and then click on

‘Search…’

None Address book must

fetch one (only one)

entry of the person

corresponding to

the e -mail Id.

Address book

Module

12/31/2013 32© BVRIT – vCAP

5 addrbook_email_partial Type in a partial

but valid e-mail id

(Ex:nagen) and

then click on

‘Search…’

None Address book

should fetch one or

more record s

where e -mail id

begin s with the

same letters .

Address book

Module

6 addrbook_email_fail Type in an invalid

name (Say jhsgjss)

and click on

‘Search…’

None Address book must

fetch zero records

and display that

record is not found.

(Negative Test

case)

Address book

Module

7 addrbook_name_full Type in a full

name (Ex:

Nagendra R Setty)

and then click on

‘Search…’

None Address book must

fetch one (only one)

entry of the person

with that name.

Address book

Module

8 addrbook_name_partial Type in a Partial

name (Ex:

Nagend) and then

click on ‘Search…’

None Address book

shou ld fetch one or

more records

where name begins

with the same

letters.

Address book

Module

12/31/2013 33© BVRIT – vCAP

Random Generation

• Data is generated randomly either using a tool

or manually. This is the simplest method but

not the most efficient

12/31/2013 34© BVRIT – vCAP

Implementing Test Cases (1 of 2)

• Unit Tests can be executed either manually or

can be automated

• Usually, testing of User Interfaces (screens) is

done manually

• Testing a function or piece of code can be

automated

12/31/2013 35© BVRIT – vCAP

Implementing Test Cases (2 of 2)

• Within the test function, when the test case

does not result in the expected output, it is

always a good practice to print all relevant

values and information which can help the

Sl
No

Test case name Test Procedure Pre-
conditi

on

Expected
Result

Reference to
Detailed

Design

6 fnFindGrade_101 Call fnFindGrade
with iPercentScore

= 101

None ‘Z’ should be
assigned to

grade
(Negative test
case)

fnFindGrade

12/31/2013 36© BVRIT – vCAP

12/31/2013

7

Recording / Logging a Defect

• Any defect found in code or document must

be recorded

• Recording of defects will ensure that the

defects detected are not lost and also ensures

12/31/2013 37© BVRIT – vCAP

Defect Tracking System

• Most software companies have a dedicated

system, for logging and tracking defects

• Most defect tracking systems can also do

detailed analysis of the defects to help a

project take corrective action in due course of

time.

12/31/2013 38© BVRIT – vCAP

A sample defect tracking Excel

sheet (1 of 2)

12/31/2013 39© BVRIT – vCAP

A sample defect tracking Excel

sheet (2 of 2)
• A defect log captures some of the following

information:
– Defect Number or Id: The number or Id which identifies the defect

– Submitted by: Person who found the defect

– Description: A detailed description of the defect

– Detected Stage: The stage at which defect was detected

• Example: Unit Testing, Code Review etc.

– Assigned to: The developer who has to remove this defect

– Type of defect: Type of defect tells about the nature of the defect

• Example: Coding Standards related, Logical Error

– Injected Stage: The stage of software life cycle where this defect might have been

introduced

• High Level Design, Detailed Design, Coding etc

– Action Taken: To be fixed or fixed
12/31/2013 40© BVRIT – vCAP

Code Review

• A process where several people offer

constructive criticism of a Software Engineer’s

code with a view to simplify it, to make it

more efficient and to eliminate errors

• Locates or identifies potential bugs and failure
12/31/2013 41© BVRIT – vCAP

Code Review

• Types:

– Self Code Review: The person who wrote code reviews his/her own code

using the code review checklist. Defects are fixed as they are found

– Peer Code Review: The team member reviews the code written by another

team member using the code review checklist

– Expert Code Review: Another person, who is an expert, reviews the code

using the code review checklist. Defects are logged into a Defect Tracking

System, and tracked to closure. The person who wrote the code has to remove

the defects from the code (not the Reviewer)
12/31/2013 42© BVRIT – vCAP

12/31/2013

8

Pre-Requisites for Peer and

Expert Code Review

The code has to meet these pre-requisites before it can be reviewed

– Does the code build without any errors and warnings?

– Has the developer unit tested the code?

– Does the source file start with appropriate header and footer and

information?

– Is the Code readable?

– Can the reviewer understand the code easily?

If the code does not meet any of the above

mentioned pre-requisites, it should be sent
12/31/2013 43© BVRIT – vCAP

Code Review Checklist

Considers following points for review:

– Reviewing Comments and Coding Conventions

– Reviewing Error Handling

– Reviewing Control Structures

– Reviewing Functions

– Reviewing Code Performance Aspects

– Reviewing Math related aspects

12/31/2013 44© BVRIT – vCAP

Some exercises on Control structures

12/31/2013 45© BVRIT – vCAP

Some examples :-

int iN1,iN2,iN3 ,iN =0;

iN1=1,iN2y=2,iN3=3;

1) if(iN > iN2)

printf(“iN1 is larger”);

else

printf(“iN2 is larger”);

2) if(iN1 > iN2)

printf(“iN1 is larger”);

Prints
iN2 is larger

Prints
iN2 is larger

12/31/2013 46© BVRIT – vCAP

Some examples :-

3) if(iN==1)

printf(“iN is one”);

else

printf(“iN is not one”);

4) if(iN=1)

printf(“iN is one”);

else

printf(“iN1 is not-one”);

Prints
prints iN is not one

Prints
prints iN is one

Prints
iN1 is non-zero

12/31/2013 47© BVRIT – vCAP

Some examples :-
6) if(5)

printf(“True’);

else

printf(“false”);

7) if(0)

printf(“True”);

else

printf(“False”);

8) if(iN==3);

printf(“true”);

else

printf(“false”);

9) if(iN1==1 && iN2 <3)

printf(“True”);

else

printf(“false”);

10) if(!4)

printf(“true”);

else

printf(“false”);

Prints
prints true

Prints
prints false

Prints
no matching if for the else

Prints
true as the expr evaluates to

true – T && T

not of a non zero value is
zero hence false is printed

12/31/2013 48© BVRIT – vCAP

12/31/2013

9

Nested if Statement

• An ‘if’ statement embedded within another ‘if’

statement is called as nested ‘if’

• Example:

if (iDuration > 6)

{

if (dPrincipalAmount > 25000)

{

printf(“Your percentage of incentive is 4%”);

}

else

{

printf(“Your percentage of incentive is 2%”);

}

}

else {

printf(“No incentive”);

}

Nested if (An ‘if’ within another ‘if’)

12/31/2013 49© BVRIT – vCAP

What is the output of the following code snippet?

iResult = iNum % 2;

if (iResult = 0) {

printf("The number is even");

}

else {

printf("The number is odd");

}

CASE 1: When iNum is 11

CASE 2: When iNum is 8

The output is

"The number is odd"

The output is

"The number is odd"

WHY???

12/31/2013 50© BVRIT – vCAP

What is the output of the following code snippet?

(1 of 5)

int iNum = 2;

switch(iNum){

case 1:

printf(“ONE”);

break;

case 2:

printf(“TWO”);

break;

case 3:

printf(“THREE”);

break;

default:

printf(“INVALID”);

break;

}

TWO

12/31/2013 51© BVRIT – vCAP

What is the output of the following code snippet?

(2 of 5)

int iNum = 2;

switch(iNum) {

default:

printf(“INVALID”);

case 1:

printf(“ONE”);

case 2:

printf(“TWO”);

break;

case 3:

printf(“THREE”);

}

TWO

12/31/2013 52© BVRIT – vCAP

What is the output of the

following code snippet? (3 of 5)

switch (iDepartmentCode){

case 110 :

printf(“HRD ”);

case 115 :

printf(“IVS ”);

case 125 :

printf(“E&R ”);

case 135 :

printf(“CCD ”);

}

• Assume ‘iDepartmentCode’ is 115 and find the

output

IVS E&R CCD

12/31/2013 53© BVRIT – vCAP

What is the output of the following code snippet?

(4 of 5)

int iNum = 2;

switch(iNum) {

case 1.5:

printf(“ONE AND HALF”);

break;

case 2:

printf(“TWO”);

case ‘A’ :

printf(“A character”);

}

Case 1.5: this is invalid

because the values in

case statements must be

integers

12/31/2013 54© BVRIT – vCAP

12/31/2013

10

What is the output of the

following code snippet? (5 of 5)

unsigned int iCountOfItems = 5;

switch (iCountOfItems) {

case iCountOfItems >=10 :

printf(“Enough Stock”);

break;

default :

printf(“Not enough
stock”);

break;

} 12/31/2013 55© BVRIT – vCAP

while Loop Control Structure (2 of 2)

• Syntax:

while (condition) {

Set of statements;

}

Next Statement;

• Example:

unsigned int iCount = 1;

while (iCount <= 3) {

printf(“%d “,iCount);

iCount++;

}

The above code snippet prints “1 2 3”

12/31/2013 56© BVRIT – vCAP

What is the output of the following code snippet?

(1 of 2)

unsigned short int iCount=3;

while (iCount) {

printf(“%u ”,iCount);

icount++;

}

The output will be “3 4 5 6 …..” . After

reaching the maximum value which is

32767, the variable will take negative

values from -32768. The loop will terminate

only when ‘iCount’ becomes zero

What is the output of the following code snippet?

(2 of 2)

unsigned int

iCount = 1;

while

(iCount<10);

{

printf("%u",iC

ount);

}

Does not display anything on the screen!!!

Results in an infinite loop..
WHY???

Because of THIS ���� ;

12/31/2013 58© BVRIT – vCAP

What is the output of the following code snippet?

(1 of 2)

int iNum;

int iCounter;

int iProduct;

for(iCounter=1; iCounter<= 3;

iCounter++) {

iProduct = iProduct *

iCounter;

}

printf("%d", iProduct);

The output is a junk value -- WHY???

This is because iProduct is not initialized

12/31/2013 59© BVRIT – vCAP

What is the output of the following code snippet?

(2 of 2)

for(iCount=0;iCount<10;iCount++);

{

printf("%d\n",iCount);

} Have U observed this?

The output is 10

12/31/2013 60© BVRIT – vCAP

12/31/2013

11

Nested Loops

• A loop with in another loop is called as nested

loop

• Example:

while (flag==1) {

for (iCount=1;iCount<=10;iCount++){

statements;

}

}

• The innermost for loop executes once for each

iteration of the outermost loop

• Question:

if the iterations in the outermost loop is 3 and

12 times

12/31/2013 61© BVRIT – vCAP

What is the output of the following code snippet?

int iCounter1=0;

int iCounter2;

while(iCounter1 < 3) {

for (iCounter2 = 0; iCounter2 < 5; iCounter2++)

{

printf("%d\t",iCounter2);

if (iCounter2 == 2)

{

break;

}

}

printf("\n");

iCounter1 = iCounter1 + 1;

}

0 1 2 is printed 3 times

Quits only the
innermost for loop

12/31/2013 62© BVRIT – vCAP

Continuing the Loops - continue Statement (2 of 2)

• Example:
for(iCount = 0 ; iCount < 10; iCount++)

{

if (iCount == 4) {

continue;

}

printf(“%d”, iCount);

}

The above code displays numbers from 1 to 9

except 4.

12/31/2013 63© BVRIT – vCAP

What is the output of the following code snippet?

(1 of 4)

int iCount = 1;

do {

printf(“%d\t”,iCount);

iCount++;

if (iCount == 5)

{

continue;

}

} while(iCount < 10);

Output: 1 2 3 4 5 6 7 8 9

What is the output of the following code snippet?

(2 of 4)

int iCount;

for (iCount=1;iCount <= 10; iCount++) {

if (iCount % 2 == 0) {

continue;

}

printf(“%d\t”,iCount);

}

Output: 1 3 5 7 9

What is the output of the following code snippet?

(3 of 4)

int iCount = 1;

while (iCount < 10)

{

if (iCount == 5)

{

continue;

}

printf(“%d\t”,iCount);

iCount++;

}

Output: 1 2 3 4 and then infinite loop

12/31/2013

12

What is the output of the following code snippet?

(4 of 4)

int iCount,iValue;

for (iCount=1;iCount <= 5; iCount++)

{

for (iValue =1; iValue <= 3; iValue++)

{

if (iValue == 2) {

break;

}

printf(“%d\t”,iValue);

}

}

Output: 1 1 1 1 1

Vishnu Career Advancement Program

C Programming Assignment
For the following assignments, write down the prototypes for the functions used

before writing the functions

1. Write a program to find nearest smaller prime number for a given Integer;

use a function to decide whether a number is prime or not.

2. Write a program that takes a positive integer as input and outputs the

Fibonacci sequence up to that number.

3. Write a program which to print the multiplication table from 1 to m for n

where m, n is the values entered by the user.

4. Write a program that will accept a string and character to search. The

program will call a function, which will search for the occurrence

position of the character in the string and return its position. Function

should return –1 if the character is not found in the input string.

5. Write a function, which prints a given number in words.

6. Write an program which will set the array element a[i] to 1 if i is prime,

and to 0 if i is not prime. Assume the array size to be 10000.

7. Write a program to count the number of vowels in a given string.

8. Write a program to obtain the transpose of a 4*4 array. The transpose is

obtained by exchanging the elements of each row with the elements of the

corresponding column.

Vishnu Career Advancement Program

Assessment Question – 2

1. Write a program that takes an integer and displays the English name of that
value. You should support both positive and negative numbers, in the range

supported by a 32-bit integer (approximately -2 billion to 2 billion).

Examples:

10 -> ten

121 -> one hundred twenty one

1032 -> one thousand thirty two

11043 -> eleven thousand forty three

1200000 -> one million two hundred thousand

2. Write a program that determines the number of trailing zeros at the end of X! (X
factorial), where X is an arbitrary number. For instance, 5! is 120, so it has one
trailing zero. (How can you handle extremely values, such as 100!?) The input

format should be that the program asks the user to enter a number, minus the !.

3. Write a program that takes two arguments at the command line, both strings.
The program checks to see whether or not the second string is a substring of the
first (without using the substr -- or any other library -- function). One caveat:

any * in the second string can match zero or more characters in the first string,
so if the input were abcd and the substring were a*c, then it would count as a
substring. Also, include functionality to allow an asterisk to be taken literally if

preceded by a \, and a \ is taken literally except when preceding an asterisk.

4. Write a program that accepts a base ten (non-fractional) number at the
command line and outputs the binary representation of that number. Sample

input is

dectobin 120

12/31/2013

1

C Programming - Level 3 and 4

12/31/2013 1

Structures

12/31/2013 2

Session Plan

• Structures

• Passing structures to functions as arguments

• Pointer to structures

• Linked Lists

12/31/2013 3

Structures (1 of 2)

• Data used in real life is complex

• The primitive data types which are provided by all

programming languages are not adequate enough to handle

the complexities of real life data

• Examples:

Date: A date is a combination of day of month, month and year

Address: Address of a person can consist of name, flat number, street, city, pin (zip) code and state

Account Details: Bank account information can contain the account number, customer ID and Balance

12/31/2013 4

Structures (2 of 2)

• A structure is a set of interrelated data

• A structure is a set of primitive data types which are related to

business and are grouped together to form a new data type

• A structure is a mechanism provided by the language to create

custom and complex data types

12/31/2013 5

Declaring a Structure (1 of 4)

• A structure can be declared using the ‘struct’ keyword

• The set of variables that form the structure must be declared with a

valid name similar to declaring variables

• Each variable inside a structure can be of different data type

• Syntax:

struct tag-name

{

data-type member-1;

data-type member-2;

……

data-type member-n;

};

• A structure declaration ends with a semicolon

12/31/2013 6

12/31/2013

2

Declaring a Structure (2 of 4)

• Date is a simple data structure, but not available
as a built-in data type

• A date has three components:
– day of month (integer, Range: 1-31)

– month (integer, Range: 1-12)

– year (integer, four digits)

12/31/2013 7

Declaring a Structure (3 of 4)

struct date {

short iDay;

short iMonth;

short iYear;

};

• In the above structure declaration, date is the tag-name

• Each variable declared inside a structure is known as a

‘member’ variable

• In the date structure, iDay, iMonth and iYear are member

variables

12/31/2013 8

Declaring a Structure (4 of 4)

• A structure is generally declared globally above function ‘main’

• The member variables cannot be initialized within a structure declaration.

It will lead to compilation error if member variables are initialized with in

structure declaration

• The structure is allocated memory only after declaring a variable of type

structure

12/31/2013 9

Accessing Member Variables of a Structure (1

of 3)

• Each member variable in a structure can be accessed individually

• Once a structure is declared, it can be used just like any primitive data

type

• Inorder to access the structure members, a variable of structure should

be created

• Example:

struct date sToday;

• To access individual members of the structure, the ‘.’ operator is used

• Example:

sToday.iDay = 30;

sToday.iMonth = 4;

sToday.iYear = 2007;

12/31/2013 10

Accessing Member Variables of a Structure (2

of 3)
int main (int argc, char** argv) {

/* Declare two instances of date structure */

struct date sToday, sTomorrow;

/* Set 'day', 'month' and 'year' in instance sToday */

sToday.iDay = 08;

sToday.iMonth = 01;

sToday.iYear = 2009;

/* Set sTomorrow's date */

sTomorrow.iDay = 09;

sTomorrow.iMonth = 01;

sTomorrow.iYear = 2009;

12/31/2013 11

Accessing Member Variables of a Structure (3

of 3)

/* Print the contents of the structure */

printf ("Today's date is: %d-%d-%d\n",

sToday.iDay, sToday.iMonth, sToday.iYear);

printf ("Tomorrow's date is: %d-%d-%d\n",

sTomorrow.iDay, sTomorrow.iMonth, sTomorrow.iYear);

}

12/31/2013 12

12/31/2013

3

typedef Keyword (1 of 2)

• One type of data can be renamed with a

different name using the ‘typedef’ keyword

(typedef is a short form of ‘define type’)

• A struct date had to be instantiated by using:

/* Create an instance of date structure */

struct date sToday;

12/31/2013 13

typedef Keyword (2 of 2)

• Example:
/* Declare the structure date */

struct _date {

short iDay;

short iMonth;

short iYear;

};

/* Define the structure ‘_date’ as a new data type

‘date’ */

typedef struct _date date;

/* Create an instance of date structure */

date sToday;

12/31/2013 14

Structures in Memory

• A structure instance occupies memory space

• The amount of memory occupied by a

structure is the sum of sizes of all member

variables

• The members of a structure are stored in

contiguous locations

12/31/2013 15

Structure within a Structure (1 of 3)

typedef struct _accountdetails {

int iAccountNumber;

char cAccountType;

char acCustomerName[10];

date sOpenDate;

double dBalance;

} accountdetails;

/* Declare an instance of accountdetails */

accountdetails sAccount;

12/31/2013 16

Structure within a Structure (2 of 3)

sAccount.iAccountNumber = 702984;

sAccount.cAccountType = 'S';

sAccount.dBalance = 5000.0;

sAccount.acCustomerName=“George”

/* Populating the date sturucture within the

accountdetails structure */

sAccount.sOpenDate.iDay = 1;

sAccount.sOpenDate.iMonth = 6;

sAccount.sOpenDate.iYear = 2005;

12/31/2013 17

Structure within a Structure (3 of 3)2A30A0

Memory

Address

2A30A1

2A30A2

2A30A3

2A30A4

2A30A5

2A30A6

2A30A7

int iAccountNumber;

char cAccountType;

c
h
a

r
a

c
C

u
s
to

m
e

rN
a

m
e
[1

0
];

(1
0

b
y
te

s
)

2A30A8

2A30A9

2A30AA

2A30AB

2A30AC

2A30AD

2A30AE

2A30AF

2A30B0

2A30B1

2A30B2

2A30B3

2A30B4

2A30B5

2A30B6

2A30B7

2A30B8

2A30B9

2A30BA

2A30BB

2A30BC

d
a

te
s
O

p
e
n

D
a
te

;

short iDay;

short iMonth;

short iYear;

d
o
u

b
le

d
B

a
la

n
c
e
;

typedef struct _accountdetails {

int iAccountNumber;

char cAccountType;

char acCustomerName[10];

date sOpenDate;

double dBalance;

} accountdetails;

accountdetails sAccount;

12/31/2013 18

12/31/2013

4

Pointer to a Structure

12/31/2013 19

Accessing Member Variables using a Pointer

• In order to access the members of a structure

using a pointer, -> (hyphen and greater than

symbol) operator is used

• Example:

date sToday,*psToday;

/* Assign the address of the structure variable to the

pointer */

psToday = &sToday;

/* Initialize the members of the structure using the

pointer */

psToday->iDay = 30;

psToday->iMonth = 6;
12/31/2013 20

Reading Structure Members using scanf

int main (int argc, char** argv) {

date sToday;

printf(“Enter Today’s Date in format day month

year”);

scanf(“%d%d%d”,&sToday.iDay, &sToday.iMonth,

sToday.iYear);

printf(“Today is %d-%d-%d”,

sToday.iDay,sToday.iMonth,sToday.iYear);

return 0;

}

12/31/2013 21

Linked Lists (1 of 4)

• A linked list is a versatile data structure used

to hold a collection of data

• A linked list essentially consists of nodes

• Each node comprises of data and a pointer

(link) to the next node in the list

• The pointer in each node points to the next

element in the linked list

12/31/2013 22

Linked Lists (2 of 4)

• The linked list shown in below is a singly linked

list

• This kind of linked list allows only uni-

directional traversal from the first node to the

last node in the list

• The first element of the linked list is called as

12/31/2013 23

Linked Lists (3 of 4)

• The advantage of a linked list is that insertion

and deletion is easier in contrast to an array

where insertion and deletion requires the

elements of the array to be moved down or

moved up which require considerable amount

of time

• Insertion of a new node in a linked list

requires setting of two pointers

• The node, after which the new node has to be

inserted, must be made to point to the new

node

12/31/2013 24

12/31/2013

5

Linked Lists (4 of 4)

• Deleting a node requires simply changing the

pointer to point to the node next to the

deleted node

• Linked list allows only sequential access. That is to search for the third

node the traversal starts from the first node, then the second node and last

the third node

• An array allows random access. That is any element can be accessed by

supplying its index

12/31/2013 25

Recap of Structures and Linked Lists

• A structure in C, is a set of primitive data types which are related to business and are

grouped together to form a new data type

• The structure members are accessed using the dot operator

• User defined data types can be created using typedef

• A structure can be embedded within another structure

• A pointer can point to a structure

• Operator -> is used to access members of a structure using structure pointer

• A structure can be passed to a function using either pass be value or pass by reference

• A function can return the structure variable to the calling function

• A linked list essentially consists of nodes

• Insertion and deletion is easier in a linked list

• Linked lists allows only sequential access

12/31/2013 26

Vishnu Career Advancement Program

C Programming Assignment
Note: In all the below problems, use and define as many as functions as

possible.

1. Write a function, which checks whether one string is a sub-string of

another string.

2. Write a program that accepts a sentence and returns the sentence. With all the

extra spaces trimmed off. (In a sentence, words need to be separated by

only one space; if any two words are separated by more than one space,

remove extra spaces).

3. Write a program, which checks for duplicate string in an array of strings.

4. Write functions to insert and delete a string from an array of strings. Write a

program that displays a menu to the user.

 a) Insert String

 b) Delete Strings

 c) Exit

 Depending on the user choice the program will call functions that will insert /

delete a string from an array of strings.

5. Write a program to print whether the number entered is a prime/odd use

functions.

6. Write a program that accepts input of a number of seconds , validates it and

outputs the equivalent number of hours ,minutes and seconds.

Vishnu Career Advancement Program

C Programming Assignment
7. Write a program that can either add or multiply two fractions. The two

fractions and the operation to be performed are taken as input and the result

is displayed as output.

8. Write a recursive function to compute the factorial to a given number. Use

the function to write program which will generate a table of factorials of

numbers ranging from 1 to m where m is number entered by the user.

9. Write a program to implement student structure with following fields

 (Name, Roll no, Age) Eg: (Ramu,15,21).

Vishnu Career Advancement Program

Assessment Question – 3

1. Write the cleanest possible function you can think of to print a singly linked
list in reverse. The format for the node should be a struct containing an

integer value, val, and a next pointer to the following node.

2. Write a Program to reverse the complete linked list. The format for the node
should be a struct containing an integer value, val, and a next pointer to the

following node.

3. Write a program that, when run, will print out its source code. This source
code, in turn, should compile and print out itself. (Fun fact: a program that
prints itself is called a quine.)

4. Given an array of integers, the goal is to efficiently find the subarray that has

the greatest value when all of its elements are summed together. Note that
because some elements of the array may be negative, the problem is not

solved by simply picking the start and end elements of the array to be the
subarrray, and summing the entire array.

For example, given the array

{1, 2, -5, 4, -3, 2}

