atorms,
&V Yo,

v

}
18, la_ll\l"\'

Qg

C Programming

Language

31-Dec-13 ©BVRIT-vCAP 1

br Introduction to Programming (1 ;‘W”«%
VISHNU of 2) ’:,\GJ;:

“Contputer Program ?

* A Computer program is a series of steps specified for the solution to a
problem, which a computer can understand and execute

Software Application ?

« ASoftware Application (or Application) is a collection of
computer programs which address a real life problem for its end users

Software Project ?

+ ASoftware Project (or Project) is an undertaking to create a
software application by writing computer programs

31-Dec-13 ©BVRIT - vCAP 3
r] awtormag;,
b Importance of adhering to S a
, 207
VISHNU standards and Best Practices 7,\ ,’g.,

* Asoftware project is a team effort.

* For smooth completion and delivery of the software project, it is essential that all
the team members follow standards and best practices which will shorten the
development time and cost of the project.

* The first time code is written, the following has to be kept in mind:

— Must be written using applicable standards
— Must have clear and consistent indentation for easy reading
— Must contain enough documentation in comments so that another person can

easily understand it.

31-Dec-13 ©BVRIT-vCAP 5

12/31/2013

atorms,
&V Yo,

br Course Objectives

VISHNU
vunesy o Efintroduce problem solving approach

}
18, la_ll\l"\'

QeeTtmg,

To develop algorithm for the given problem

To understand and appreciate the use of Functions
* Tounderstand the coding standards of the Software Industry
* Tounderstand Testing, Debugging and code review.

* Tounderstand structures and Linked Lists.

31-Dec-13 ©BVRIT-vCAP 2

br Introduction to Programming (2 ;‘W”«%
VISHNU of 2) ’:,\GJ;:

UNIVERSAL LEARNING

Software Project Team?

* Asoftware project is a team effort
- Pro[ect Manager: Plans and manages the entire software project

— Module Leader: Manages and leads the team working on a particular module
within the software project

- ottware Engineer: Writes code. A software engineer also tests the code

and delivers defect free code

31-Dec-13 ©BVRIT - vCAP 4
r sowtormay o,
b Importance of adhering to s f—,j

o,

VISHNU standards and Best Practices ",,\01

5

* Not following standards and best practices while writing code
will result in:
— Not able to complete coding and testing on time (Project delays)
— Not able to understand one’s own code after a period of time
— Complete rewriting of portions or entire code

— Alot of effort in rewriting the c~47

— Alot of wasted effort and time

— Working Late nights

31-Dec-13 ©BVRIT-vCAP 6

\nformg,,
%

br Comments in a C Program }%\

Qertng,,

»

YISHNU

* Comments are used to document programs and improve readability
* Itisavery good practice to add comments to all the programs.
* InCProgram, a comment will start with /* and ends with */

* Comments are ignored by the compiler during the compilation process.

Figure 2-2: Reviewing a program with no comments Figure 2-3: Reviewing a program with
7

31-Dec-13 ©BVRIT-vCAP comments

18, la_lll\l"\

wtorms,
&V t,

br Comments in a C Program Contd. ‘h
02

mmglz The code in any line should not exceed 80 colurr%’\}
¢ Common Programming Errors and Guidelines:

— (1) Forgetting to terminate the comment */

— Comments should make the code accessible to the reader

— Explain the code's intent in the heading

— Keep the comments up to date (if you update the code, update the

comment)
— Don't comment bad code--fix it

— Avoid useless comments

31-Dec-13 ©BVRIT - vCAP

e

br Importance of Following Coding
VISHNU Standards

Qertng,,

»

¢ The coding standards may differ from project to project

* This may also vary from customer to customer

Every company prepares its own coding standards

* Adhering to coding standards has the following advantages:
— Improves the readability of the program
— Improves the clarity of the program
— Makes a person to understand the program without any difficulty

— Makes it easy to debug and maintain the program

31-Dec-13 ©BVRIT-vCAP

\nformg,,
%

N}a’
18, la_ll\l"\'

12/31/2013

\nformg,,
K o,

br Comments in a C Program Contd.
VISHNU .

N}
18, la_ll\l"\'

Qertng,,

»

¢ Syntax:
/* Comments */
/*This is a single line comment */

/* This is a multiline

* comment in C */

/
* This style of commenting is used for functions
/
31-Dec-13 ©BVRIT - vCAP 8
r wormag,
. . . ~ 2
b Naming Variables Accordingto ¢ P 2
VISHNU o Standards . ‘:\ &
«dtingrarian Notation: invented by Charles Simonyi from Microsoff
— Itis a good programming practice that a vriable name should also indicate its
data type and its intended use.
if there is a variable ‘Age’ which is of type integer, then it should be
i Data Type Example
i int and it int iTotalMarks
f float fAverageMarks
d double dSalary
L long and unsigned long |Factorial
signed char and unsigned char cChoice
ai Array of integers aiStudentld
af Array of float afquantity
ad Array of double adAmount
al Array of long integers alsample
ac Array of characters acEmpName
31-Dec-13 ©BVRIT - vCAP 10
wkormay,
Vg S
H g S
File Header Block <0
VISHNU ‘é\ J;"

* Allsource and header files must contain at the beginning of file, a section
providing information about the source or the header file

* Format:
/
o
* File : <filename>
* Description : <description>
* Author : <author> <company>
* Version : <version number>
* Date : <Date>
*/

* Here the description should be a brief summary of what the code in the file does
31-Dec-13 ©BVRIT-vCAP 12

r swioma,
b File Footer Block { \

YISHNU

Qertng,,

18, la_lll\l"\

* Allfiles should have this footer at the end of the file

/
* End of <filename>
/
31-Dec-13 ©BVRIT-VvCAP 13
\ntormg,
(N %,

b General Commenting Guidelines
VISHNU

UNIVERSAL LEARNING

N}
Bojup®

Rt

»

« The ratio of code to comments should be 10 : 3 (30% should be comments)

* Whenever there is a block of code which is doing something complex, sufficient amount
of comments should be put in to explain

* Comments should be current and up to date

— Every time code is changed, care should be taken to update comments as well

— This applies to both File, Function headers and Comments in code as well

* Comment should not be in the same line as the code

* Useonly CStyle comments (/* This is a line of comment */)

31-Dec-13 ©BVRIT - vCAP 15

v o a s,
visHy EASE
Programming and Testing:
s Functions

31-Dec-13 ©BVRIT-vCAP 17

12/31/2013

\nformg,,
K o,

p SV
b Function Header Block
VISHNU 9\

e,

18, la_lll\l"\

epartm

All functions (or methods) in the C files should be preceded by a comment block

Format:

**** Function: <Function Name>

*

Description: <Overview of the function>

Input Parameters:

* *

<Parameter 1> - <brief description>

*

<Parameter 2> — <brief description>

* Returns : <Return values both in case of success and

* error conditions if the function returns something>

Kk)

31-Dec-13 ©BVRIT-vCAP 14

e S
b Indentation of Code f_\QJ%

YISHNU X &
UNERSAL LEARNING
* Indentation s the practice by Software Engineers to use spaces or tabs consistently in
every line of code to group lines together based on their scope for easy readability
* Anindented code looks better and can be understood easily
Ex:
#include<stdio.h>
void main ()
{
float a=10, b=5;
printf(“%f”,a*b);
}
Product of two numbers.
d Well Indentated code
31-Dec-13 ©BVRIT-VCAP 16

b’ s‘hmmw 2
Functions £ 3|
VISHNU E\ 1;5

« Afunction is a section of a program that performs a specific task

* Alarger problem can be subdivided into smaller ones and by solving these sub

problems we arrive at the solution for the larger problem.

* Solving a problem using different functions makes programming much simpler

with fewer defects

31-Dec-13 ©BVRIT-vCAP 18

12/31/2013

Same book

b’ Modular Programming - Manag

B jde and Conquer approach 5)(‘\»«,
published in H| q PP £ 0 |
YISH several volumes. | VISHNU "Z‘ '$
Huge Book of Easily
3000 pages manageable

Vol 2

31-Dec-13 ©BVRIT-vCAP 19

Vol 3 e
©BVRIT - vCAP 20

br Non Modular Programming Approa br Understanding Functions - Modular Sl

Abug in / The
hAL) / thg specified

part

Abug in the
program(in
the
specified

YISHNU

UNIVERSAL LEARNING.

part) program E separated
Whole Either
object replaced /
undergone repaired
diagnose
and testing
A non- 1
modular
Program Modular I
Program
31-Dec-13 ©BVRIT - vCAP 31-Dec-13 ©BVRIT - vCAP 22

€,

r . a\\ﬂorm;,/% r 5“‘“‘"’”“/0’
v;w Why functions? ;@ L Advantages of Functions (1 of 3) £

xwl‘m%ctions can be developed by different people and can be combinetﬁLherJ
Use Top Down Approach to analyse Banking Operations(Customer Operations)

)

i
w”i\v

partm
13y,
13y,

one application

Easy to code and debug

=
Functions support reusability. That is, once a function is written it can be called from
4 any other module without having to rewrite the same. This saves time in rewriting the
same code.
A

| Cash deposit

Creating Account ‘ ¢ Since the functions can be written by different people, the overall application

development time will be less.

31-Dec-13 ©BVRIT-vCAP 23

31-Dec-13 ©BVRIT-vCAP 24

atorms,
&V Yo,

br Advantages of Functions (2 of 3) &
VISHNU

8, ‘a_‘mpq\

James working on

Susan working on cash George working on
enquiry module

withdrawal module cash deposit modulg

Work Allotment

Code Integration

&

Application Development

31-Dec-13 ©BVRIT-vCAP 25

torm,
=

Identifying Functions

N alu“,‘a\

YISHNU

UNIVERSAL LEARNING

Rt

* The first step in solving a large problem is identification of sub problems.
* In C programming terms, the sub problems can be viewed as functions

* Once the functions are identified, solving the problem becomes easy.

31-Dec-13 ©BVRIT - VvCAP 27
\ntormg,
p & o, |
b g K3
af e .]
Identifying Functions <0
VISHNU z &
UNIVERSAL LEARNING Monihly Saiary
Calculation function
— [KeyTas]
Overtime Calculation Bonus Calculation Annual Increment
function function Calculation function
— Sub Tasks
31-Dec-13 ©BVRIT-VvCAP 29

12/31/2013

atorms,
&V Yo,

br Advantages of Functions (3 of 3)

artm,
92 ime,,
2>

R
|
ﬂaw’

Check Account
Balance Function

Developed

James working on

withdrawal module enquiry module

Susan working on cash ‘ |

31-Dec-13 ©BVRIT-vCAP 26

I st
R
P8 S\

Identifying Functions £ E
VISHNU ving ‘";\GJ;’

vvesPrglfem statement

“,1\

— In an automobile company salaries are delayed every month due to the manual

calculations of the pay roll.

Employee dissatisfaction.

Management decided to computerize the operation to remove this delay.

— i) When an employee joins the company, he/she will be fixed with a monthly

salary.

li) He /she can work overtime and the overtime amount will be added with the

salary.
— Bonus will be announced every year for all categories of employees.

— In April, employees get the annual increment.

31-Dec-13 ©BVRIT - vCAP 28

atorms,
&V Yo,

br Classification of Functions $
VISHNU

rtm,
8, ‘a_‘mpq\

« Library functions

- Defined in the language

- Provided along with the compiler
Example: printf(), scanf() etc.
* User Defined functions

- Written by the user

Example: main() or any other

user-defined function

12/31/2013

r ifi i H a\“\hrm,%’ . . A \\‘\Wf"la.‘/oa
b Classification of Functions K \‘»j ssing values to functions and returning véay%\ej

* Main is a user defined function and it is the starting point of execution of a program.

* Functions are used to perform a specific task on a set of values
« Library is a collection of commonly used functions. It is present on the hard disk and is

Values can be passed to functions so that the function performs the task on these

written for us by people who write compilers.
values

Library functions need not be written by the user whereas the user defined functions

Values passed to the function are called arguments
have to be written by the user.

* After the function performs the task, it can send back the results to the calling
« Libraries do not need main function to be defined in them as they are a collection of function

functions. * The value sent back by the function is called return value

* Afunction can return back only one value to the calling function

31-Dec-13 ©BVRIT-vCAP 32

\ntormy, \ntormy,
\ %, "o,

&
v .? Coding Standards for Writing)fé\
ISy J VISHNU Functions (1 of 2) A\ /

int main (int argc, char *argv)

ﬁsing values to functions and returning va

DBojoup®
enrtng,
s

{ * Afunction name should be preceded by fn
int iNumberl, iNumber2, iGreaterNo;

printf (“Enter two numbers to compare”); * The first character in the function name should be written in upper case
scanf (“%d %d”, &iNumberl, &iNumber2);

GreaterNo = fnGreater (iNumberl, iNumber2)Z> — Every subsequent word in the function name should start with an upper case
printf (“The greatest among t is %d”, i terNo) ;

return (0); alphabet

}
int fnGreater (int iNuml, int iNum2)
if (iNuml > iNum2)

i . fnFactorial
{ return(iNuml);} Function Definition
else

{ return(iNum2);} fnItemDisplay

Function Call * Example:

31-Dec-13 ©BVRIT - vCAP 33 31-Dec-13 ©BVRIT - vCAP 34

wkormay,

oY

b’ Elements of a Function

YISHNU

b’ Coding Standards for Writing
VISHNU Functions (2 of 2)

Qertng,,

' Y
18, la_ll\l"\'
4:0“_',,“,“

* The function should begin with a header which describes about the function. It is

= Function Declaration or Function Prototype :
written as follows:

— The function should be declared prior to its usage

/
* Function: fnFactorial () = Function Definition :
— Implementing the function or writing the task of the function
* Description: Accepts an integer and finds the _ Consists of
* factorial * Function Header
*

Input Parameters: * Function Body

*

int - Number for which factorial to be found

* Returns: int - Factorial of the given integer = Function Invocation or Function call:

— To utilize a function’s service, the function have to be invoked (called)

31-Dec-13 ©BVRIT-vCAP 35 31-Dec-13 ©BVRIT-vCAP 36

b’ Declaring Function Prototypes (1 of 2)5\\» ma,

VISHNU AN

« Afunction prototype is the information to the compiler regarding the user-defined

18, la_lll\l"\

function name, the data type and the number of values to be passed to the function
and the return data type from the function

This is required because the user-defined function is written towards the end of the
program and the ‘main’ does not have any information regarding these functions

The function prototypes are generally written before ‘main’. A function prototype

should end with a semicolon

31-Dec-13 ©BVRIT - vCAP 37
p .) . Sy,
b Writing User-Defined Functions g‘)fé\”«;
VISHNU 3 <]
wnesp feitittion header and body looks like this: p\ J;

Return-data-type function-name (data-type argument-1,
data-type argument-2,...)

{
/* Local variable declarations */
/* Write the body of the function here */
Statement (s);
return (expression);
}

* The return data type can be any valid data type

« Ifa function does not return anything then the ‘void’is the return type

* A function header does not end with a semicolon

The ‘return’ statement is optional. It is required only when a value has to be returned

31-Dec-13 ©BVRIT - vCAP 39

b’ Writing User-Defined Functions (2 of

VISHNU
vmyokd-fnDisplayPattern (unsigned int iCount)

{

Y
13y, la_:u\l’“

unsigned int iLoopIndex;

for (iLoopIndex = 1;iLoopInd iCount; iLoopIndex++)
{
printf (“*");

}
/* return is optional */
return;

}

Prints
31-Dec-13 ©BVRIT-VvCAP 4

12/31/2013

\nformg,,
K o,

b’ Declaring Function Prototypes (2 of 2

YISHNU

* Function Prototypes declare ONLY the signature of the function before actually

Qe -
\}
Bugoup™>

defining the function

Here signature includes function name, return type, list of parameter data types and

optional names of formal parameters

Syntax:
return_data_type FunctionName (data_type argl,

data_type arg2,...,data_type argn);

Example:

int fnValidateDate (int iDay, int iMonth, int iYear); (OR)
int fnValidateDate (int, int, int);

31-Dec-13 ©BVRIT-vCAP 38

\akormay,
.,
%)

br Writing User-Defined Functions (1 of ﬁh
’ .04
wi Return data] Arguments =

type

Bojup®

(Parameters)

int fnAdd(int iNumberl, int iNumber2)
(—:l Function
u {
* i ion* N
/* Variable declaration*/ header
int iSum;
Function
Body
/* Return the result */
return (iSum);)

A y
\ Can also bp written as return isum;]

31-Dec-13 ©BVRIT - vCAP 40

/* Find the sum */
iSum = iNumberl + iNumber2;

b’ Writing User-Defined Functions N

VISHNU (3 of 3)

int fnAdd(int i berl, int i ber2)
{

qepattng,
!
4;0“_"“‘,“

/* Return the result*/
return (iNumberl + iNumber2);

/* Function to display “VvCAP Cell.” */
wvoid fnCompanyNameDisplay ()

{
printf (“vCAP Cell.”);

31-Dec-13 ©BVRIT-vCAP 42

br Returning values

YISHNU

* The result of the function can be given back to the calling functions
¢ ‘return’ statement is used to return a value to the calling function

¢ Syntax:
return (expression) ;

* Example:
return (iNumber * iNumber);
return 0;
return (3);
return;

return (10 * i);

31-Dec-13 ©BVRIT-vCAP

\nformg,,
%

lo}

Qertng,,

18, la_lll\l"\

br Calling User-Defined Functions (2 of
VISHNU

UNIVERSAL LEARNING

* Calling a function which does not return any value

/* Calling a function */

fnDisplayPattern(15);

« Calling a function that do not take any arguments and do not return anything

/* Calling a function */

fnCompanyNameDisplay () ;

31-Dec-13 ©BVRIT - vCAP

torm
qowtogma,

gﬂM,, 5

e

I-wFunctions Work?

YISHNU .
vt e PN ()

User defined
function
Functon —
call
31-Dec-13 ©BVRIT - vCAP

\nformg,,
X o,

{0}

Qertng,,

18, la_lll\l"\

12/31/2013

atorms,
&V Yo,

br Calling User-Defined Functions (1 of Zef)%\

mEMmlaJetion is called by giving its name and passing the required arguments’ \

NSEL
18, la_lll\l"\

* The constants can be sent as arguments to functions
/* Function is called here */

iResult = fnAdd (10, 15);

* The variables can also be sent as arguments to functions
int iResult, iNumberl=10, iNumber2=15;
/* Function is called here */

iResult = fnAdd(iNumberl, iNumber2);

31-Dec-13 ©BVRIT-vCAP a4

qwiorma,,
Fauis
0

&
;| Function Prototype |
—

Calling Function

return 0; Function Call ‘
} Statement

br Function Terminologies

partme,,

A

YISHNU

UNIVERSAL LEARNING.

void fnDisplay () ; —-

int main(int argc, char **argv)

{

£fnDisplay () ;.

void fnDisplay () Function Definition

(
printf (“Hello World”);
}
Called
Function
31-Dec-13 ©BVRIT - vCAP 46
r Q\Q\\vdﬂl'mu/,,d)

L Formal and Actual Parameters §1 7] ‘%l
VISHNU ;;\ 1;"

The variables declared in the function header are called as formal parameters

* The variables or constants that are passed in the function call are called as actual

parameters

* The formal parameter names and actual parameters names can be the same or

different

31-Dec-13 ©BVRIT-vCAP 48

12/31/2013

r swormar, r swormar,
b Functions — Example (1 of 2) g“)(‘\‘», b Functions — Example (2 of 2) &)X 4%
2 g S g
VISHNU > & VISHNU &
DL skasie NERSAL ARG Formal Arguments
Function Prototype
Ant £nAdd(int 1 berl, int 1 ber2) ; /* Function to add two integers */ =

int f£nAdd(int i berl, int i ber2)

int main(int argc, char **argv) { {

int iResult, iValuel=5, iValue2=10; /* Local variable declaration*/

/* Function is called here */ int iSum;

iResult = fnAdd(iValuel, iValue2); iSum = iNumberl + iNumber2; /* Find the sum */

printf(“Sum of %d and %d isk§d\n”,iValuel, iValue2,iResult); return (iSum); /* Return the result */

return 0; \\\ } \
} .

Return value
Actual Arguments
31-Dec-13 ©BVRIT-VvCAP 49 31-Dec-13 ©BVRIT-VvCAP 50

t t

r Example - Finding the sum of two numbers using functions <\ e’ r Example — Finding the sum of two numbers using functions < e, ,
b parameter passing and no return) ‘_g" G ‘7‘3 b (parameter passing) ‘_g" ‘7‘3
VISHNU Th T VISHNU 3\01;:

UNIVERSAL LEARNING UNIVERSAL LEARNING

#include< stdio.h >
void fnSum(int iNumberl, int iNumber2);

#include< stdio.h >

void fnSum();
int main(int argc, char **argv) {

int iNumberl, iNumber2;

printf ("\nEnter the two numbers:");
scanf ("%d%d", &iNumberl, &iNumber2) ;
fnSum (iNumberl, iNumber2) ;

return 0;

int main(int argc, char **argv) {
fnSum() ;
return 0;

void fnSum() {
int iNuml, iNum2, iSum;

}

printf ("\nEnter the two numbers:"); void fnSum(int iNuml, int iNum2) {

scanf ("%d%d", &iNuml, &iNum2) ;
iSum = iNuml + iNum2;

int iSum;
iSum=iNuml + iNum2;

printf ("\nThe sum is %d\n", iSum); printf("\nThe sum is %d\n",iSum);

} }
31-Dec-13 ©BVRIT-VCAP 51 31-Dec-13 ©BVRIT-VCAP 52
r Example — Finding the sum of two numbers using functions 2 0 r . Q\W)
b parameter passing and returning value§ ‘:;j b Function Calls and Stack (1 of 5) g ‘:;j
VISHNU S 1;5 VISHNU 'i\ J‘%?

¢ Astack is a Last In First Out (LIFO) arrangement of memory in which the item that is
#include< stdio.h >
int £nSum(int iNumberl, int iNumber2); added last is the one to be removed first
int main(int arge, char **argv){ + Items are added and removed only at one end called as top of the stack
int iNumberl, iNumber2, iSum;
printf ("\nEnter the two numbers:");
scanf ("%$d%d", &iNumberl, &iNumber2) ; stack is called as POP
iSum = fnSum(iNumberl, iNumber2);
printf ("\nThe sum is %d\n", iSum);

* Inserting an item in to the stack is called as PUSH and removing an item from the

Added last and to be
removed first

return 0;

}

int fnSum(int iNuml, int iNum2) { ”
int iTempSum; N
iTempSum=iNuml + iNum2; RN c:l
return iTempSum; Add::":i;‘s;te:r;:sl‘o be

}
31-Dec-13 ©BVRIT-vCAP 53

12/31/2013

\atormay,
% 0,

{0}

2

br Function Calls and Stack (2 of 5)

YISHNU

v

Qertng,,
&
opoup

Qg
lia,a_lmp“

1] i)

=

PUSH

r e\wt«rm,,,a r e\\.\torm,,,a
. %) .

S Function Calls and Stack (3 of 5) ;‘)%\”, 18 Function calls and Stack (4 of 5) ¥ 4¢3
VISHNU %\ 1»: VISHNU &
SHOERSALEAR N e N y*sFimd the sum of two integers */ s

void fnSumPrint (int iValuel, int iValue2);
Local variables of function Ant main(int argc, char **argv)
) {
Arguments to function int iNumberl=10, iNumber2=20;
User-Defined Function f rint (iNumberl, iNumber2) ;
return 0;
Local variables of main }
R void fnSumPrint (int iValuel, int iValue2)
Arguments to main ¢
Function main int iResult;
iResult = iValuel + iValue2;
STACK printf (“%d”, iResult);
}
31-Dec-13 ©BVRIT-vCAP 58
p . p . g,
b How a function call reflects on b Scope of Variables S g
A 1 F’ 'I' E’
Local Variables of . VWI‘SMHMNU .'.;\ J;,
fnSumPrint() iResult iResult=30 iResult=;
>
Formal Parameters of iValue1=10 iValue1=10 iVa 10 . : . .
faSumPrint) Value2=20 Value2=20 vy The scope of variables refers to that portion of the program where the variables
fSumPrint() fnSumPrint() umPrint() can be accessed
ol Variabies | INumber1=10 iNumbert=10 iNumber1=10 iNumber1=10 * Theyare accessible in some portion of the program and in the other they are not
iNumber2=20 iNumber2=20 iNumber2=20 iNumber2=20
| - accessible
:;Z‘;Emg o intarge intarge intarge int arge
win() char *argv char *argv char*argv char *argv + scope of a variable defines the portion of the program in which the set of
main) main) main() main) variables can be referenced and manipulated

1. Program Stack 2. Program Stack 3. Program Stack 4. Program Stack L o .

When executing main when executing when executing after returing * When a variable is required in a program, it can be declared as:
fnSumPrint() iResult= IValue1+ Value2 from fnSumPrint() _ Local variabl
(Valuet and (code in fnSumPrint act back to main ocal variable
Walysz are upor} copies ~-iNumber1 — Global variable
copies of and iNumber2 only)
iNumber1 and

31-Dec-13 iNUmbefZ) ©BVRIT - vCAP 59 31-Dec-13 ©BVRIT - vCAP 60

10

atorms,
&V Yo,

br Local Variables (1 of 2)

YISHNU

* The variables that are declared inside a function are called as local variables

}
18, la_ll\l"\'

Qg

¢ The scope is only within the function in which they are declared
* Local variables cannot be accessed outside the function in which it is declared
* Local variables exist in the memory only till the function ends

* The initial values of local variables are garbage values

31-Dec-13 ©BVRIT-vCAP 61

wtorms,
&V Yo,

&,

br Global Variables (1 of 2)

10

« The variables that are declared outside all the functions (above ‘main’) are called

“,1\

partm,

as global variables

* These variables can be accessed by all the functions
* The global variables exist for the entire life-cycle of the program
¢ The global variables are by default initialized to zero
¢ Coding Standard:

— Each global variable should start with the alphabet ‘g’

— Example:

int givalue;

float gfSalary;

31-Dec-13 ©BVRIT - VvCAP 63
A a\\ﬂﬂ"rw/%
ifference between Local and Global Varlgmej
VISHNU 3 1;"

ey

ince every function is to act as an independent black box, the
variables declared inside one function are not available to another
function.

* By default, the scope of a variable is local to the function in which it is
declared. That is, a variable declared within a block is said to be local to
that block and cannot be accessed in any other block. If another
function needs to use this variable, it must be passed as a parameter to
that function.

* Avariable that is declared outside of all functions is a global variable.

* Global variable value can be accessed and modified by any statement
in an application.

31-Dec-13 ©BVRIT-vCAP 65

12/31/2013

br Local Variables (2 of 2) 5““‘"“"@ X
ISHNU %&GJ;;?EI

yx-Find the sum of two integers */
void fnSumPrint (int iValuel, int iValue2);

int main (int , char ** - o B

int main(int arge, char **argv) Variables ‘iNumber1

(and ‘iNumber2’ are
int iNumber1l=10, iNumber2=20; —- local to function

fnSumPrint (iNumberl, iNumber2) ;

‘main’

return 0;
}
void fnSumPrint (int iValuel, int iValue2)
{

Variable ‘iResult’ is
local to function
‘fnSumPrint’

int iResult; e

iResult = iValuel + iValue2;
printf (“%d”, iResult);

31-Dec-13 ©BVRIT-vCAP 62

wtorms,
&V Yo,

&,

br Global Variables (2 of 2) Py
,ﬁm‘ﬂ# the sum of two integers */ ‘5\ J'-:;

void fnSumPrint (int iValuel, int iValue2);
int giNumberl, giNumber2;

int main(int argc, char **argv) T Global variables

{

“,1\

partm,

giNumberl=10;
giNumber2=20;
fnSumPrint () ;
return 0;

}
void fnSumPrint ()
{

Variable ‘iResult’ is
local to function
‘fnSumPrint’

int iResult; __ .
iResult = giNumberl + giNumber2;
printf (“%d”, iResult);

31-Dec-13 ©BVRIT - vCAP 64

\nformg,,
5 o,

wlfference between Local and Global Varig%e,
H g
SISHEY A

« The lifetime of the global variable is the same as that of the program

itself; therefore the memory allotted to the global variable is not

released until the program execution is completed. .

« Animportant distinction between local variables and global variables is
how they are initialized.

* Global variables are initialized to zero.

* Local variables are undefined. They will have whatever random value
happens to be at their memory location.

« Automatic, or local, variables must always be initialized before use. It is
a serious error, a bug, to use a local variable without initialization.

31-Dec-13 ©BVRIT-vCAP 66

11

\nformg,,
%

wlfference between Local and Global Vari’g@*?‘

VISHNU > g
wresVHER inside a function, a local variable has the same name as a global variable
(iSameName, for example), the local variable gets precedence to the global variable.

+ Storing variables - Stack and Heap

2

o044

8,

When functions are in execution, memory is allocated from the stack for variables that
are referenced in a function. This storage is released as soon as the function completes
the execution.

The variables declared inside a function (i.e. all the local variables) are allocated on the
stack, as part of the function's stack frame.

This stack frame is wiped out once the function exits. All the local variables go away
when the stack frame is wiped out.

Global variables, that are visible to every single function in the program, are stored on
the heap memory. Since they are accessible to every program the lifetime of global
variables is the lifetime of the program.

31-Dec-13 ©BVRIT-vCAP 67

#include <stdio.h> wtormg,
L\ (A
int giGlobalVar;

18, ”“,1\

intisameName;

Rt

int fnFunc();

void main(int argc, char **argv) {

intiLocalVar; int fnFunc() {
iSameName =1; int iLocalVar;
giGlobalVar=2; int iSameName;
iLocalVar =3; giGlobalVar = 20;

iLocalVar = 50;
printf("Starting in main : ");

iSameName = 10;
printf(" iGlobalVar = %d, iLocalVar = %d, i

("In SubFunc..");
isameName = %d \n\n", giGlobalVar,

printf(" iGlobalVar = %d, iLocalVar
= %d,iSameName = %d \n\n",

giGlobalVar,

iLocalVar, isameName);
fnFunc();

printf("Returned to main: "); iLocalVar,iSameName);

printf(" iGlobalVar = %d, iLocalVar = %d, }

isameName = %d \n\n", giGlobalVar,
iLocalVar, isameName);

31)Dec-13 ©BVRIT - vCAP 69

tormay,
@at is the output of the following code snj ?

VISHNU
wredntregiGlobal ;

o

epart
\%Q
liala_m\"\'

int main(int argc, char **argv) {
int iLocal;
printf (* Value of Local = %d \n,

Value of Global = %d”, iLocal,
giGlobal);

return 0;

The output is:
Value of Local = <some garbage value>
Value of Global = 0

31-Dec-13 ©BVRIT-vCAP 7

12/31/2013

#include <stdio.h>

r
°\\‘\W "w/%
int giGlobalVar; S %
Cntissmenans> = ‘5 le
3 S
£ &
int fnFunc(); G ~

void main(int argc, char **argv) {

int fnFunc() {
CsameName =3 C_intiLocalVar

Cint iSameName;
giGlobalVar =
iLocalVar =3;
ClLocalVar =3
printf("Starting in main : ");
o;
printf("In SubFunc..'
Ly printf(" iGlobalVar = %d, iLocalVar
= %d,iSameName = %d \n\n",

giGlobalvar,
‘\ CBameNameD
}

printf(" iGlobalVar = %d, iLocalVar = %d,

isameName = %d \n\n",

fFunc();

printf("Returned to main: ");

printf(" iGlobalVar = %d, iLocalVar = %d,

isameName = %d \n\n",

31yDec-13 ©BVRIT - vCAP 68

\akormay,
.,
%)

br Disadvantages of Global Variables s

YISHNU

UNIVERSAL LEARNING

%

Qepirtne,,
18, alu\l"\

« Lifetime of global variables is throughout the program

— Hence usage of global variables leads to wastage of memory

* Scope of the global variable is throughout the program

— Hence more than one function can modify the value of the global variable.

This makes debugging difficult.

31-Dec-13 ©BVRIT - vCAP 70

\nformg,,

bﬁ Program stack and heap ﬁr\(

XJ%S&EMg execution of a program, the storage of program a‘h&
is as follows:

)
=
185, la_lu\\’“'

— The executable code is stored into the code /Text segment
— The global variables are stored into data segment
— The heap memory is used for dynamic memory allocation The local
variables are stored into the stack
¢ Heap: A section of memory within the user job area that

provides a capability for dynamic allocation (Not discussed in this
course)

Code Segment {4———————— Executable code

Data Segment {——————— Global variables
Heap {————— Dynamic memory
Stack 4———— Local Variables

12

\\v\hf"w/

* When a function is called and if the function accepts some
parameters, then there are two ways by which the function
can receive parameters

— Pass by value

e,
“,a\.

u!

b Parameter Passing Techniques
VISHNU

g

epartm
Bogo

o
A

— Pass by reference

31-Dec-13 ©BVRIT - vCAP 73
r \\n“’”"ir/,,
b Pass by Value _5‘)%\”’%

AN
"’”“‘“F iNumbert| 108 |

oz gg) | Wanbe

3

YISHNU

UNIVERSAL LEARNING

‘ End of function fnUpdateValues |

31-Dec-13 ©BVRIT - vCAP 75
r awtormay,
18 Pass by Reference (4 of 5) “)(‘\

oe? ar(m%
450“_',,“9\'

YISHNU

g
IVaIlle1 -—. plNum1 MM'M

Value2| 280 | piNum2 |Jjincs f el

‘ End of function fnUpdateValues |

31-Dec-13 ©BVRIT-vCAP 77

12/31/2013

\wtormay,

oS

t

vw(m%
450“_',,“9\'

bﬁ Pass by Value

YISHNU

* When parameters are passed from the called function to a
calling function, the value of the actual argumentis copied
onto the formal argument

* Since the actual parameters and formal parameters are stored
in different memory locations, the changes in formal

parameters do not alter the values of actual parameters

31-Dec-13 ©BVRIT-vCAP 74

awtermar,

br Pass by Reference

YISHNU

UNIVERSAL LEARNING

& au\n'“

gﬂ""ll!/,/

* Addresses of actual parameters are passed

* The function should receive the addresses of the actual
parameters through pointers

¢ The actual parameters and formal parameters are referencing
the same memory location, so the changes that are made

become permanent

31-Dec-13 ©BVRIT - vCAP 76

ifference between pass by value and pass

U ;
vt reference %‘h

' Y
185, la_u\l"\'

Pass by value Pass by reference

Consumes more memory space | Consumes less memory space.

because formal parameter Because irrespective of the actual

also occupies memory space. arguments data type, each pointer
occupies

only 4 bytes.

Takes more time for execution, Takes less time because no values are

because the values are copied copied

31-Dec-13 ©BVRIT-vCAP 78

13

Iﬁm ng array elements to a function — Pass Qysemsr;,
4b value 2 L |
There are two ways to pass array elements to a function.
— Pass by Value
— Pass by Reference

ey,

18, la_il\l"\'

/* Demo of Pass by Value */

void fnDisplay (int iMarks);

int main(int argc, char **argv) {
int iIndex;
int aiMarks[] = {55,65};

::}or (iIndex=0; iIndex<=1;iIndex++)
fnDisplay(aiMarks[iIndex]);

}

return 0;
)
void fnDisplay (int iMarks) {

printf(“%d” , iMarks);

}

31-Dec-13 ©BVRIT - vCAP 79
. . awtermag,
%ssmg arrays to a function-Pass by referg\y?a,

While passing a whole array to a function, base address of Ot

element gets passed

* Any changes made to the array by the called function are

reflected back into the original array in calling function

31-Dec-13 ©BVRIT - vCAP

torm,,
b’ Summary H

YISHNU
U SEEtItn of a program that performs a specific task is called as a function
Advantages of functions
— Reusability
— Modularity
— Easyto code and debug
— Reduced application development time
To Identify the functions, identify the sub problems to be solved
Function prototypes should be exactly same as the function header
The variables declared in the function header are called as formal parameters

Qertng,,

18, la_lll\l"\

The variables and the constants that are passed in the function call are called as actual
parameters
Scope of variables: The portion of the program where the variables can be accessed
— Local variables: The variables that are declared inside a function
— Global variables: The variables that are declared outside all the functions
Parameter passing techniques
— Pass by value: The actual values are passed to the function
Pass by reference: The address of the variables are passed to the function

When arrays are passed as arguments to the function they are passed by reference

31-Dec-13 ©BVRIT-vCAP

12/31/2013

ﬁsing arrays to a function-Pass by referergw

« Arrays are always passed by reference. V

18, la_ll\l"\'

While passing arrays to a function, base address of 0t element gets passed.

Any changes made to the array by the called function are reflected back into the
original array in calling function.

Ex: void f£nFindSq (int []); /* Function prototype*/
int main(int argc, char **argv) {
int iIndex;
int aiNum[] = {5,6,10};
fnFindSq(aiNum , 3);
return 0;

/* Function Call */

}
void £nFindSq (int aiSgNum[], int iMax) {
int iCnt;
for (iCnt = 0; iCnt < iMax; iCnt++)
aisgNum[iCnt] = aiSgNum[iCnt] * aiSgNum[iCnt];

1]

31-Dec-13 ©BVRIT-vCAP

Rbping arrays to a function-Pass by references
2)

S

Fojop?”

A>FiEtion Prototype */
void fnFindSq (int aiSgNum[], int iMax);
int main(int argc, char **argv) {

int iIndex;

int aiNum[] = {5,6,10};
fnFindSq(aiNum , 3);
return 0;

/* Function Call */

}
void £nFindSq (int aiSgNum[], int iMax) {
int iCount;
for (iCount = 0; iCount < iMax; iCount ++) {
aiSgNum[iCount] = aiSgNum[iCount] *
aiSgNum[iCount];

}

31-Dec-13 ©BVRIT - vCAP

14

Vishnu Career Advancement Program

C Programming Students Manual

1. INTRODUCGTIONoooiiotiiietie ettt et e e tte e e etee et eeete e eeaeeseae e eesaeeeesteeeeseseessesesnteseenseseseseenseeeesseeeesessesreas 1
R O 7 N\\[€] 02X €) = USSR RUOR RO 1
2T ANST C oottt e e et e e e e e et e e e ——eea—eeeetre e ——t e et e eareeebeteataeeeteeeerreeearean 1
3. NAMING CONVENTIONSttt e ettt e e e et e e e e ettt e e e eaaaaeeseeataaeeeeeaaaeeseennareeeaan 1
3.1 PrO@ram fIlES....c.eiiuieiiieieeiee ettt et et e b e et bbbt a bttt et ea e bt e ebeeeaneenee 1
R IR 111 1ot o) s K TSRS PR 3
R I o T2 o) (T SRR RRRN 3
4. DATA STRUCTURESooeioteeeeteee ettt ettt ete e et e et e e etae e eeae e e etaee e taeeeeteeeereeseesseeenseeesseeseseeeenseeesnnes 4
4.1 Define Structures as TYPEAELESoo.uiiiiiiiiiee ettt ettt st st 4
4.2 SEIUCHUTE TAZS ..ttt ettt et ettt et e bt e bt et e eht e ebte et e e st e e bt e sbeenbeesabesabesabeenseenbeens 4
5. PROGRAMMING CONVENTIONSoooiiieti ettt ettt e e vt eetv e s s e e steeeeabeeeaaaeesbaeenaseeessseenanseas 5
5.1 SOULCE FIIES ..ottt e e ettt e e e e e e e et e e e e ettt ae e e e aaaaeeeeeataeeseennaeeeeseeaesseseannseseesansereeeeanes 5
RN 5 (=TT 13 S (S PRU PR 5
IR I V£ ST 1) (-SSP RRRN 5
I ST s (el o) 1 T USSR PRRN 7
5.5 Braces and INAENTAIONc.eeeeveeeiiieiiieeiteeeitte et eesteeesteeeteeestaeessbeeessseessssaessseessssessssseessssessssesssssessnseen 7
5.0 OtNET ISSUES ...uvvieieieiiieee ettt eeect et e ettt e e e ettt e e e eetaaeeeeeetaaaaeeeetasaeeeeataeaeeeeaabeeaesenaseeeeseansssseeeannsssseeaansssaeeeanes 8
6. DOCUMENTATION ...ttt e e e et e e e eeaae e e e eeeaaeeeeeeeesseeeeeeesaaeeeseensaeseseesstaseesennaanes 9
6.1 Source header and modification NISTOTY..........ccoiiiiiiiiiiiiiiiiiec e 9
6.2 ProCEAUIE NEAUETSoeiiieeieiiieeeieeeeeeeee ettt ee e e e e e e e e e e et ae e e eeaaeeeeeensaeeeeseeaesseeeannsseeeeeassseeeeanes 9

6.3 In-line and DIOCK COMUMENTSvviiiieiieiieeieiieiee e ettt e e e e e e eeate e e e eeaae e e e eeeaeeeeeeensaeeeeseesaeeeeseesaseseessraneeeas 10

1. INTRODUCTION

The goal of this standards document is to promote error free source code that is readable,
usable, maintainable, and portable. This guide defines a particular style, offers some
justification for it, and presents examples where appropriate.

This guide is designed to serve as a reference for experienced library developers, and to
acquaint new developers with the standard.

Each project may be segregated into functional phases, depending on customer
requirements and development sequencing.

2. CLANGUAGE

2.1

ANSI C

All code must be composed of valid ANSI C statements with no reliance on particular
language constructs which might cause platform/compiler dependence.

3. NAMING CONVENTIONS

3.1

Program files

A 8.3 character file-name format can be used to name all program files. Program files
include:

Source files
Header files

3.1.1 Naming source files

The initial 8 characters for source files can be made up as follows:
<application name><module name>

Application names should contain a maximum of 4 small letters (e.g. xadm).
Module names can be arrived at keeping in mind the following points :

The module name could clearly identify the functional area which the module addresses.
E.g.: xadmio.c, mdmSave.c, mdmClone.c, mdmu.c.

The module name could identify a particular user interface/messaging object which the
module addresses. E.g.: mdmlcon.c, udmmBar.c, udmmFont.c, mdmFldld.c.

The module name could just describe if it deals with user interface or backend. E.g.:
udmmBknd.c

1 of 10

The main module (containing function main() or entry point to the application) should
be <application_name>.c. E.g.. xadm.c, mdm.c.

The naming conventions for each of these kinds of applications/libraries are listed in the
following tables.

Table 3 - Source file naming convention for applications/libraries

Name Description
xadm.c Main module
xadmio.c Module containing functions performing I/O using APIL.
xadmp.c Module containing page routines supported by the application.
xadmu.c Module containing utility routines (typically to assist I/O functions

defined in xadmio.c - processing of data after 1/0)
udmmBknd.c | Module containing code for interfacing with the application
infrastructure.

Note: The link between function names and the source file names should be
maintained, so that given a function name it is easy to determine which source file
contains its definition.

E.g.: xadm which is an API-based application could possibly have a file named
xadmio.c (all the input/output routines) . So all the function names could start as
xadmio_readline().

3.1.2 Header files

The initial 8 characters for header files should be made up as follows:
<application name><extension>

Application names should contain a maximum of 4 small letters (e.g. xadm)

There should always be a header file called <application_name>.h. All the other header
files can be included via this header file.

Extensions will be chosen to clearly indicate what the header file contains.

The header file naming conventions for pure API-based applications/libraries are given in
the table below:

Table 2 : Header file naming convention for API applications/libraries (short filenames)

Name Description
xadm_d Definition file containing structure
definitions and typedefs for the structures
xadm_c Constants and macros
xadm_f Function Prototypes
xadm_p Portability File

An optional ‘_p’ can be appended to ‘_d’, ‘_c’ and ‘_f’
extensions to indicate ‘portability’ related header files.

20f 10

3.2 Functions

e Function name can begin with module name followed by a description (e.g.
xadm_save_all, mdm_init_jazz_engine). The general logic to be applied while

naming functions is
<application + module_name>_<operation>_<object>

¢ Only functions which are not called explicitly anywhere can begin without a
module name. Typically notify ,issue functions ,event handlers etc. which are
assigned to function pointers or are called intrinsically come under this category.
(e.g. set_domain_background_color_issue).

e Function Declaration—External to File

Functions called from outside of a file must be defined by prototypes in an include
file (for that file). This implies that prototypes should never occur in C source files (. c
files); instead, the .c file should #include the appropriate include file. For
example, if the file cashflow.c defines the functions GtoFree CFL and Gto
NewCFL, theinclude file cashflow.h should contain:

TcashFlowList *GtoNewCFL
(TDate *dates, /* (I) Dates */
double *amounts, /*(I) Amounts */
int numItems) ; /*(I)Length */
void GtoFreeCFL (TCashFlowList *);
/* Destructor */

o Code Reuse

Any time there is a need for more than a couple lines of code in more than one
place, the code must be placed in one function or macro which is then called from
multiple places.

e Function Size

In general, functions must not be longer than a page or two. Nesting of for,
while, do, and if statements should not be more than four levels deep.

e Function Order Within a File

Within a file, higher level functions (those which call other functions) must come
first.

3.3 Variables

e All variables are to be named in Hungarian Notation using alpha-numeric
characters only. The data type is prefixed to the variable name based on the
following table :

30of 10

Table 1 : C variable naming convention

Prefix Data type Example
1. i 1. int (signed and unsigned) 1. ilndex
2. ¢ 2. char (signed and unsigned) 2. cOperator
3. f 3. function 3. fButtonNotify
4. d 4. double 4. dAskPrice
5. s 5. structure or typedef structure 5. sTradeGroup,

sEnv
6. p 6. pointer 6. pHndl
7. pts 7. pointer to ‘type defined’ structure 7. ptsTradeGroup
8. pc 8. pointer to character array 8. pcCharacterArray
9. pd 9. pointer to double 9. pdBidPrice
10. pi 10. pointer to integer 10. pilndexToArray
11. pv 11. pointer to void 11. pvVoid
12.a 12. function arguments whose value will be | 12. aHndl
returned to its caller.

13. ac 13. array of char or address of char 13. acOperator
14. ai 14. array of integers or address of integer 14. aiErrorCode
15. ad 15. array of double or address of double 15. adAskPrice
16. ap 16. array of pointers or address of pointer 16. apNameList

For register variables, add ‘Reg’ after the prefix (eg. iRegl.oopCount)

4. DATA STRUCTURES

4.1 Define Structures as Typedefs

All structures must be defined as a typedef. For example:

typedef struct
{

int fNumItems;
TDate *fArray;
} TDatelList;

4.2 Structure Tags

All structures must have a tag which names the structure preceded by a single
underscore. In other words, the previous example should really look like this:

typedef struct _TDatelist /* Tag here */
{

int fNumItems;

TDhate *fArray;

} TDatelList;

40f 10

5. PROGRAMMING CONVENTIONS

5.1 Source files

The source file structure should generally adhere to the following layout :
Comment block for module description (see section : 6.1)

All source files should be surrounded by

#ifndef <source_file_name>_C_INCLUDED /* eg. MDM_C_INCLUDED */
#define <source_file_name>_C_INCLUDED

;'#endif /* At the end of file */

#include header files

Macros (#defines) block to define all macros specific to this source module

Static Globals block. The order is C data types, application data types followed by user
defined data types

Static function prototypes block

Functions definitions.

5.2 Header Files
All header files should be surrounded by

#ifndef <header_file_name>_H_INCLUDED /* eg. OS_H_INCLUDED */
#define <header_file_name>_H_INCLUDED

(contents of header file)
#endif

5.3 Variables

The following conventions should be followed while naming and locating the C variables

Variables should be declared individually, one per line.

int iSeconds;

Incorrect |int ilIndex,
iSeconds;

S5of 10

Variables should be named as defined in section 3.3

The format for defining pointers is :
<type><space>*<one or more spaces><pointer variable>;
E.g.:
int * pCode;
char * pcBuf;

Static variables to be defined in the source files only

Global variables should be always be defined as
EXTERN struct tsNCharcb sOpenRoutineName;

where EXTERN is defined as

#ifdef <application_name>_C_INCLUDED
#define EXTERN

#elseif

#define EXTERN extern

#endif

Global variables should not be initialized during declaration
Global variables should be initialized separately in a initialization routine

Initialize only one variable per statement.

Correct ilndex = 0;
iSeconds = 0;

Separate the “tokens” in the intended manner
e.g. write y = x / *p; rather than y=x/*p;

(*p is the value pointed to by p, in the second case everything beyond x is treated as
comment and the intent is lost)

Do not assume automatic initialization of Global variables
Avoid using static variables inside functions unless it is absolutely necessary

Register variables should be used only for counters for large loops. Preferably let the
compiler handle register optimization

Explicitly modify variables which occur more than once in one statement; not as part of
the statement itself

Correct 1XXX = piYYY[iIndex] + piZZZ[iIndex];
iIndex++;

Incorrect 1XXX = piYYY[iIndex] + piZZZ[iIndex++];

6 of 10

54

5.5

Functions

The following conventions should be followed while writing functions

Prototypes of static functions should be included in the source files only

Arguments should be listed one per line in a function’s declaration and in its prototype
Example:

int read_emp_all (
char acEmpNo[],
char acEmpNamef[],
float iEmpSalary

)

When a call to a function spans more than one line, each argument should be placed on
its own line

Upon success, a function should return an int whose value is set to OK, otherwise it
should return an int whose value is set to NOT_OK

The last argument to a function should be an int * for which dereferencing is valid
only when the function returns NOT__OK

Return arguments should be enclosed in parenthesis

Functions should be written in pairs - one to do something an the other to undo it.

Braces and Indentation

Left braces should appear five spaces indented from the beginning of the previous line
A right brace should appear in the same column as its matching left brace

Other statements should appear on the same line as a brace except at function level where
the left brace appears on the first column and the statements appear five spaces indented
from the left brace

When multiple arguments of a function call are written one per line, all the arguments
should appear on the same column as the first argument. For pointer data types, the * is
placed immediately after the data type with a single space between them. The variable
names should be aligned to the same column.

int xadm_add_to_socket_list(tsDialogInfo * ptsDialogInfo,

tsNCharcb * ptsSocketName,
tsNCharcb * ptsSocketAddr,
int * aiCode)

7of 10

5.6 Other Issues

The following issues should be observed carefully to write portable and understandable
code

Do not assume the sizes of various data types. Always use the sizeof operator. An integer
on a 16-bit operating system may be 2 bytes while on a 32-bit operating system, it may be

4 bytes.

Use parentheses judiciously to make the code more readable
fore.g.

*sStatus.piErrorCode is less readable than
* (sStatus.piErrorCode)

If a statement appears over-parenthesized, break it up into multiple statements

got o statements should not be used

Do not use “break” to come out of loops; use flags instead

Always handle default in switch statements. Every case statement block

should have a break statement.

Correct switch(iItemType) {
case TYPE_A

break;
case TYPE_B

break;
default

break;
}

Incorrect | switch (iItemType) {
case TYPE_ A

break;
case TYPE_B

}

Avoid magic numbers. Always use #define or const to represent such numbers

Correct #define MAX_CLASS_SIZE 36

if (iClassSize < MAX_CLASS_SIZE)

Incorrect | if (iClassSize < 36)

8 of 10

For frequently used strings, use a const char *. This is preferable to using

#define macro to declare constant strings.
Correct const char *pPrompt = W“Press any key to
continue”;
printf (pPrompt) ;
printf (pPrompt) ;
printf (pPrompt) ;
Incorrect | - - -
printf (“Press any key to continue”);
printf (“Press any key to continue”);
printf (“Press any key to continue”);

6. DOCUMENTATION

Documentation is to be provided for the following purposes :

6.1 Source header and modification history

All source and header files will contain a section providing information about the source
or the header file. The format is given below

/

b S e R S . S I S

X o X

*/

File
Descriptio
Author
Started On
Modificati

DDMMMYYYY

<filename>

n : <description>
<author> (Infosys Tech. Ltd., Bangalore)
6 June 1996

on History

Name Change/Description

XXXXXXX YYYYYYY YYYYY YYYYYYYYY YYYYY YYY VY YVY

The modification history should record any significant changes to the program logic.

6.2 Procedure headers

All function are preceded by a comment block which will be of the format given below

/******************** 80 Characters Wlde R I b b S b e dh b I b b S b i dh b i 2

*

X ok X

Function

Description

<Function Name>

<Overview of the function>

90of 10

Input Parameters

Returns

Globals

Static funcs : aaaaal()

Extern funcs : bbbbb ()

X% o >k X o >k X ok > X ok X % 3k X X % X % % X

***/

6.3 In-line and block comments

In-line comments are discouraged. Provide in-line comments only if they are a must

Other comments should begin with the same indentation as the succeeding source code
and end on the 80th column

Blank lines occur before and after the comment blocks.

Avoid commenting individual statements. Instead comment a group of statements
explaining the logic

Avoid trivial comments like /* increment counter */

10 of 10

b Vishnu Career Advancement Program
VISHNU

UNIVERSAL LEARNING

C Programming Assignment

(S

. Write a program to find whether the number entered by the user is prime
number or not. Extend this program to list all the prime numbers between

two given numbers.

[\S)

. Do the following for the user-entered number of students. Find the average
marks for a student of his marks in 3 subjects. Print whether he passed or

failed. A student will fail if his average is less than 50. Use for loop

o)

. Do the following for an unknown number of students. (User will ~ explicitly
indicate when to terminate). Find the average marks for a student of his
marks in 3 subjects. Print whether he passed or failed. A student will fail if

his average is less than 50. Use While loop.

N

. Write a program, that accepts a integer from the user and print the integer

with reverse digits. For eg: rev(1234) = 4321.

5. Find the sum of the digits of a given number.

6. Given three numbers, determine whether they can form the sides of triangle.

3

. Write a program which allow to perform any of the following operations
on two 3*3 arrays

a) Add Arrays.

b) Multiply Arrays.

c) Subtract Arrays.

VISHNU

UNIVERSAL LEARNING

Vishnu Career Advancement Program

1.

r-

Assessment Question - 1

Write a program that takes in three arguments, a start temperature (in Celsius),
an end temperature (in Celsius) and a step size. Print out a table that goes from
the start temperature to the end temperature, in steps of the step size; you do
not actually need to print the final end temperature if the step size does not
exactly match. You should perform input validation: do not accept start
temperatures less than a lower limit (which your code should specify as a
constant) or higher than an upper limit (which your code should also specify).
You should not allow a step size greater than the difference in temperatures.
(This exercise was based on a problem from C Programming Language).

Sample run:

___ .
Please give in a lower limit, limit >= 0: 10
Please give in a higher limit, 10 > limit <= 50000: 20
Please give in a step, 0 < step <= 10: 4

Celsius Fahrenheit

10.000000 50.000000
14.000000 57.200000

. Here's a simple help free challenge to get you started: write a program that

takes a file as an argument and counts the total number of lines. Lines are
defined as ending with a newline character.

Program usage should be “count filename.txt”
And
The output should be the line count.

. In this challenge, given the name of a file, print out the size of the file, in bytes.

If no file is given, provide a help string to the user that indicates how to use the
program. You might need help with taking parameters via the command line or
file I/0 in C++ (if you want to solve this problem in C, you might be interested
in this article on C file 1/0).

Here is another mathematical problem, where the trick is as much to
discover the algorithm as it is to write the code: write a program to display
all possible permutations of a given input string--if the string contains
duplicate characters, you may have multiple repeated results. Input should
be of the form

br Vishnu Career Advancement Program

VISHNU

UNIVERSAL LEARNING Assessment Question - 1
permute string
and output should be a word per line.

Here is a sample for the input cat

cat
cta
act
atc
tac
tca

atorm,

YISHNU

qepattng,
4:0“_',“‘,“

C Programming — Level 2 and 3

Language

12/31/2013 ©BVRIT-vCAP 1

br Session Plan S\W%
RO

UNIVERSAL LEARNING

* Recursive Functions

* Testing

* Debugging

* Code Review

* Some Exercises on control structures

* PF Project Discussion

12/31/2013 ©BVRIT - vCAP 3

br Recursive Functions (2 of 7)

VISHNL
[f*=Finding the factorial of an integer using a

recursive function */

qerertn,,

j

S N
00Uy

%N

int fnFact (int iNumber); /* Function Prototype */

int main(int argc, char **argv) {
int iFactorial;
iFactorial=fnFact (4);
printf ("The factorial is %d\n", iFactorial);

return 0;

12/31/2013 ©BVRIT-vCAP 5

12/31/2013

\nformg,,
%

5 S

Qertng,,

»

YISHNU

18, la_'ll\l"\'

ER/CORP/CRS/LA87
12/31/2013

VRIT - vCAP

wtorms,
&V t,

br Recursive Functions (1 of 7) h
\@

Rt

YISHNU

UNIVERSAL LEARNING

* When a function calls itself it is called as Recursion

* Many mathematical, searching and sorting algorithms, can be
simply expressed in terms of a recursive definition

« Arecursive definition has two parts:

Base condition : When a function will terminate
Recursive condition :The invocation of a recursive call to the function

* When the problem is solved through recursion the source code
looks elegant

12/31/2013 ©BVRIT - VvCAP

Bojup®

X

\nformg,,
X o,

N}
18, la_ll\l"\'

int iFact;
if (iNumber <= 1) {

br Recursive Functions (3 of 7) g
VISHNU AN
int fnFact (int iNumber)

{

return 1;
}
else {
iFact = iNumber * fnFact (iNumber - 1);
}
return iFact;
}
12/31/2013 ©BVRIT-vCAP

12/31/2013

a0 b . . & 5
Froaram Stack ot Recursive Functions (5 of 7) <0
% @ VISHNU AN £

> : [t

mainQ: fnFactorial(3):

Program Stack i tractonat * Find the output of the following code snippet when the
@ % function is called as fnReverse(5);
5
main0: Tai(a): 2):
Broaram Stack e TSI TEStena
void fnReverse (int iValue)
" {
main0: o) . : :
Broaram Stack s peratii ractoriar) Micacaria) if (ivalue > 0) {
[V AaDATED) @ fnReverse (ivValue-1);
S main0: 1(3) } .]
Frogram Stack e Tesesa printf("sd\t",ivalue);
S }
s % &
Eactornala)

iFactorial

Outputwillbe 01 2345

12/31/2013 ©BVRIT - vCAP 8
r awormay, r awormay,
(R & m 4 (R & m”«,
Recursive Functions (6 of 7) :SXQI% Recursive Functions (7 of 7) £ QIE
VISHNU < & VISHNU . . ‘»’l& 3
o e ° N ~efmd the output of the following code snipp N
*_Find the gutput of the following code snippet ensvivaestnagtURCHER IS Called as ThReversel();
int givalue = 5; /*: Glol_)al Variable Déclaration * lint giIndex = 0;
vorhmretbedfunction is called as fnReverse() roid fnReverse ()
(
(
if (givalue > 0) { if (gacString[giIndex] != '\0') {
givalue--; i .
giIndex++;
fnReverse () ; fnReverse() ;
)
)
printf ("%d\n",givValue); giIndex—-;
} if (giIndex >= 0){
printf ("%c",gacString[gilndex]);
)
}
12/31/2013 ©BVRIT - vCAP 9 12/31/2013 ©BVRIT - vCAP 10
swformay, A . . s\nformay,
br g‘r\(f; br Objective of Testing s‘r\‘”i
i+ @ H H|
VISHNU ‘i\ Jl%? F

Xlsﬂdg An error or defect in software that

S

the program to malfunction

* Bugs in software often lead to frustration for the

end user of the software.

e Bugs in critical software, where financial

By) tri uge amounts $ e
e PSS
“In God we trust; All else we test” B Sl s lead to huge < e
Guaranteed
Cu>iui
12/31/2013 ©BVRIT - vCAP 1 12/31/2013 ©BVRIT - vCAP 12

atorms,
&V Yo,

e,

b’ Unit Testing (1 of 2)
AN

¢ Each individual unit of code is tested to ensure

185, la_u\l"\'

epartm

that it performs its intended functionality

¢ Unit tests are done on their respective modules
by Software Engineer who has written code

* Unit tests are created using some techniques
which ensure that all logical paths of the code

it are tested and refE%in¥am number of errors®

€y, 2
s

rtm,
\;

bp Documenting Test Cases (1 of 1) WJ

VISHNU %’,\Gﬁ

UNIVERSAL LEARNING

* Very often test plans contain hundreds of test

cases and so it is essential to keep

St Test case Test Procedure Pre- Expected Reference to
No name conditi Result Detailed Design /
Spec Document

on
simplest terms as possible

—| TestPlan
12/31/2013 ©BVRIT - vCAP 15
r swormar,
b Types of Test Cases ‘f\

Qevertme,
450“_',,“9\'

YISHNU

* Test cases are of two types:

— Positive test case: A positive test case is one which is designed in such a way
that the program or module being tested succeeds. (A valid input is passed to

geta valid result.)

Negative test case: A test case which is designed in such a way that the
program or module being tested gives appropriate error code on an invalid
input. (Usually an invalid input or condition is created in negative test cases.)

Negative test cases test the robustness of the program

12/31/2013 ©BVRIT-vCAP 17

12/31/2013

atorms,
&V Yo,

e,

b’ Unit Testing (2 of 2)

l“_"“’“

cpartn,
o

VISHNU . . . kA 0 &
s defects found during unit testing are Io‘g@e
in the Defect Tracking System (DTS) and they are
tracked till the defects are removed from the

code

» Test Case: A set of inputs, execution
preconditions, and expected outcomes
developed for a particular objective, such as to

@¥itcise a particular Prégfdm path or to verify *

wtorms,
&V Yo,

e P
> Documenting Test Cases (2 0f 2) € @
VISHNU 2 1

#“A'tést case name should be of the following

Bojou®

format.

<Module Name>_<Function Name>_<Test

Procedure>, where

— Module Name is the name of the module the test case tests
— Function Name is the name of the function or functionality the test case tests
— Test Procedure is a term or word which briefly represents what the test case is

trying to do
* Test Procedure (Condition to be tested):
Explains briefly but cJgarly,.what the test case is;

ormay,
o,
2

b’ Identifying Test Cases }%\
VISHNU

2

Qevertme,
450“_',,“9\'

* Boundary Value Analysis

* Equivalence Partitioning

* Logic Coverage

¢ Random Generation

12/31/2013 ©BVRIT-vCAP 18

b’ Boundary Value Analysis (1 of 7) Es‘}g‘m\”")«:
VISHNU %,XGJ;;?I

* A boundary value is one which indicates the
border (or the limit) of a value

* Test cases that explore boundary values have
the highest payoff in terms of detecting bugs,

as the most common errors occur at the

12/31/2013 ©BVRIT-VCAP 19
Boundary Value Analysis (30f 7) i+ @ 73
VISHNY E‘, ,,)Iz?
AEEASSE |
* Function: fnFindGrade
* Description: Given the percentage score of student,
* assigns the grade of the student.
* Criteria for Grades:
* A - 80 to 100
* B+ - 73 to 79
* B - 65 to 72
* C - 55 to 64
* D - 0 to 54
* Z - for invalid grades (Score <0 or score >100)
* Input Parameters:
* int iPercentScore - Percentage scored by the student
* Char acGrade[] - Array containing the grade assigned
* Returns:None
/
12/31/2013 ©BVRIT-VCAP 21
u\\mhl"nu/%

b Boundary Value Analysis (5 of 7)
VISHNU

}
185, la_u\l"\'

Qg

* A score expressed in percentage can be only

between 0 and 100. Any value beyond 0 and

100 are considered as invalid and the function

should return the grade as ‘2’

12/31/2013 ©BVRIT-vCAP 23

12/31/2013

b awtormay o,
Boundary Value Analysis (2 of 7 fs 5
VISHNU Y ysis |) E&GJ%J

* For example if an input condition specifies that

the range of values of the input variable items

must be o 10 2poundary values
101 99100 101
-4, Y4, ’
S Lower ™\ 7 upper\
Lower Limit Lower Upper Limit Upper
Limit -1 Limit + 1 Limit -1 Limit + 1
12/31/2013 ©BVRIT - vCAP 20
awtormay,

K3
)9

ou’

b Boundary Value Analysis (4 of 7)

partme

\}'a'fd‘fsg‘nfindGrade (int iPercentScore, char acGrade[])

C

if (iPercentScore >=80 && iPercentScore <=100)

{ strcpy(acGrade,”A”); }

else if (iPercentScore >=73 && iPercentScore <=79)
{ strcpy(acGrade, "B+");}

else if (iPercentScore >=65 && iPercentScore <=72)
{ strcpy(acGrade,”B”); }

else if (iPercentScore >=55 && iPercentScore <=64)
{ strcpy(acGrade,”C”); }

else if (iPercentScore >=0 && iPercentScore <=54)
{ strcpy(acGrade,”D”); }

else

{ strcpy(acGrade,”2”); }

12/31/2013 ©BVRIT - vCAP 22
u\“\hrm,, o,
' . o 5

b Boundary Value Analysis (6 of 7) g“)‘a\’»ﬂ

NV Fs
Sl | Testcase name | Test Procedure Pre- Expected Reference
No conditi | Result to Detailed
on Design /
Spec
Document
1 fnFindGrade_Mi | Call fnFindGrade | None “Z2” should | fnFindGrad
nusOne with be e
iPercentScore = - assigned to
1 grade
(Negative
Test case)

2 |fnFindGrade_0 Call fnFindGrade | None Grade “D” | fnFindGrad
with shouldbe |e
iPercentScore = 0 assigned

3 |fnFindGrade_1 Call fnFindGrade | None Grade “D” | fnFindGrad
with shouldbe |e
iPercentScore = 1 assigned

12/31/2013 ©BVRIT - vCAP 24

12/31/2013

n\“\hrm;,/% r n\\ﬂormn/%
N i . e N o
. $ 2 bs Equivalence Partitioning (1 of 4 '5)(‘\“»,
b Boundary Value Analysis (7 of 7) {4 @ #3 q g) <0
VISHNU ZM VISHNU E\ 1;5
“'sl | Testcase name Test Procedure Pre- Expected | Reference v t—e
No conditi | Result to Detailed)
on 2::‘09"’ * This consists of dividing all possible inputs into
Document
4 |fnFindGrade_99 | Call fnFindGrade None Grade “A” | fnFindGrad . .
with iPercentScore = should be |e a set of classes, where either all inputs that fall
99 assigned
5 fnFindGrade_100 | Call fnFindGrade None Grade “A” | fnFindGrad
with iPercentScore = shouldbe |e
100 assigned into a given class are valid or all are invalid.
6 fnFindGrade_101 | Call fnFindGrade None “Z” fnFindGrad
with iPercentScore = shouldbe |e
101 assigned .
:ﬁg;fhe’e Then selecting a few test cases from each class
test case)
12/31/2013 ©BVRIT-vCAP 25 dsisufficient ©BVRIT-vCAP 2

S\\.\wm,,,%) S\\mrm,,@)}
L Equivalence Partitioning (2 of 4) f-\ﬂl"% L Equivalence Partitioning (3 of 4) € @ *:
VISHNII i & VISHNU < &
S| | Testcase name Test Procedure Pre- | Expected | Reference to S| |Testcase name | TestProcedure Pre- Expected | Reference to
No conditi | Result Detgiled No conditio | Result Detailed
on Design/ n Design /
Spec Spec
Document Document
1 | fnFindGrade_E20 | Call fnFindGrade with | None | Grade “D” | fnFindGrade 4 | tnFindGrade_B71 | Call fnFindGrade with | None Grade “B” | fnFindGrade
iPercentScore = 20 should be - iPercentScore = 71 should be
assigned assigned
2 fnFindFrade_D48 Call fnFindGrade with | None | Grade “D” |fnFindGrade 5 fnFindGrade_A90 | Call fnFindGrade with | None Grade “A” | fnFindGrade
iPercentScore = 48 should be iPercentScore = 90 should be
assigned assigned
3 fnFindGrade_C59 | Call fnFindGrade with | None | Grade “C” | fnFindGrade
iPercentScore = 59 should be
assigned
12/31/2013 ©BVRIT-vCAP 27 12/31/2013 ©BVRIT-vCAP 28
\P\\Mﬂf"li.‘/%) r L . C 1 f 4 \Q\\ﬂ"mu/%)
b . s $ 2 b ogic Coverage (1 o0 3 %
Equivalence Partitioning (4 of 4) §\°]§| & ge () <0
VISHNL < & VISHNU 2 J;"
S| | Test case name Test Procedure Pre- Expected | Reference to "W‘“*ﬁ‘ﬂ"s technique aims to generate enough test
No conditi | Result Detailed
Design/ H H
on Spec cases so that an appropriately defined coverage
Document . . .
6 fnFindGrade_Invalid_ | Call fnFindGrade None “Z” fnFindGrade Crlterlon IS met
Minus30 with iPercentScore = should be . . .
-30 ;-,ssigr;ed * Criterion: Every statement in the program must
o grade
(Negative H
Test aase) be executed at least once, every branch in the
7 |inFindGrade_Invalid_ | Call inFindGrade | None | “Z" fnFindGrade program must be executed at least once, or
300 with iPercentScore = should be .
300 assigned every path in the program must be executed at
to grade
(Negative least once
Test case)
* Example:
12/31/2013 ©BVRIT - vCAP 29 12/31/2013 ©BVRIT - vCAP 30
Thall focaf, hina tha addeace haak chauld b fiondlv and

a\\ﬂ"mf/%
2 (oY
H g |
Logic Coverage (2 of 4) £ E|
VISHNU z &
UraresAL kNG Telephone directory search.
Fle Edt Vew Go Bookmarks Took Help [
@~ @ @ | L] Fediscipocmen v [CL
[Fwefox elp [Fiefox suppert [Plugin FaQ
Search Address Book...
 Accepts partial values in £-wail, Nome fields. Ex: To search for
E-mait id nagendra_setty", partiat name like "nesendra’ can be used.
(Howiever Multiple matches may be found)
E-mail:
Name
Employee Number
Dane
12/31/2013 ©BVRIT-VvCAP 31
|5 ‘ |addrbook_email_partial [Type in a partial None ‘ fAddress book lﬂ\ddress book |
but valid e-mail id should fetch one or W\odule
(Ex:nagen) and jmore record s
hen click on here e -mail id
‘Search...” pegins with the
fame letters .
6 addrbook_email_fail Type in an invalid None | Address book must Address book
name (Say jhsgjss) fetch zero records Module
and click on and display that
‘Search...” record is not found.
(Negative Test
case)
7 addrbook_name_full Type in a full None | Address book must Address book
name (Ex: fetch one (only one) | Module
Nagendra R Setty) entry of the person
and then click on with that name.
‘Search...”
8 addrbook_name_partial Type in a Partial None | Address book Address book
name (Ex: shou ld fetch one or Module
Nagend) and then more records
click on ‘Search...” where name begins
with the same
4/201 BVRIT 2 letters. 33

b Implementing Test Cases (1 of 2) Z A
VISHNU

* Unit Tests can be executed either manually or

Qertng,,

18, la_'ll\l"\'

can be automated

* Usually, testing of User Interfaces (screens) is

done manually

 Testing a function or piece of code can be

12/31/2013 ©BVRIT-vCAP 35

12/31/2013

[fest case name [[Trest Procedure Pre- | ﬁ)ected Result Reference to
cond Petailed
ition Pesign

1 addrbook_all_blank All the fields are None | Address book must Address book
kept blank and display an Error Module
click on ‘Search...” message and prompt

user to enter at least
one field.
(Negative Test case)

2 addrbook_empno_ok Type in an None | Address book must Address book
employee numbe r fetch one (only one) Module
(Ex: 7342) and then entry of the person
click on ‘Search...” with that employee

number

3 addrbook_empno_fail Type in an invalid None | Address book must
employee number fetch zero records
and then click and display that
‘Search...” record is not found.

(Negative Test case)

4 addrbook_email_full Typeinafulle - None | Address book must Address book
mail id (Ex: fetch one (only one) Module
nagendra_setty) entry of the person
and then click on corresponding to

1p/31/2013 ‘Search..” ©BVRIT—}CAP the e -mail Id. 32

wtorms,
&V Yo,

j
“,1\

br Random Generation

107

UNIVERSAL LEARNING

epartm,

* Data is generated randomly either using a tool
or manually. This is the simplest method but

not the most efficient

12/31/2013 ©BVRIT - vCAP 34

\nformg,,
X o,

i 4

U"Pﬂ,r
Y

b Implementing Test Cases (2 of 2) it

%

oo

ISHNII o8
Sl | Test case name Test Procedure Pre- Expected Reference to
No conditi | Result Detailed

on Design

6 fnFindGrade_101 | Call fnFindGrade None Z’ should be fnFindGrade

with il to

=101 grade
(Negative test
case)

¢ Within the test function, when the test case
does not result in the expected output, it is

always a good practice to print all relevant

12/31/2013 ©BVRIT-vCAP 36

12/31/2013

19 S, 19
b Recording / Logging a Defect E‘gajj b Defect Tracking System £

vIsHNY B4 vIsHNY alr
* Most software companies have a dedicated
* Any defect found in code or document must
system, for logging and tracking defects

be recorded * Most defect tracking systems can also do

detailed analysis of the defects to help a
* Recording of defects will ensure that the

project take corrective action in due course of

12/31/2013 ©BVRIT-VCAP 37 12/31/2013 ©BVRIT-VvCAP 38
r wormag, r wormag,
. = %) . o 2
b A sample defect tracking Excel gmﬁr, b A sample defect tracking Excel ¢ 2
. .- PR T -3 = H
: TS chaat (2 Af 2) AN &
) BEXG o8
CEl e et e pet Fame Dk i dedw teb e sqesnaeh « - 8 X * A defect log captures some of the following
NEERSGRITEIS LB S0 08 80 1) EARAN-Y : 3 P
: n & - information:
i ol s R A RO | | & By 1] ¥4 Reply vith Changes... End Review...]
Al - E# — Defect Number or Id: The number or Id which identifies the defect
A [B c D [E F] 6 I I — Submitted by: Person who found the defect
Submitted Type of 1 o : .
1 B Description _|Detocted StagelAssigned To | Defect | Injected Stage|Action Taken|Notes — Description: A detailed description of the defect
CL‘E‘C: — Detected Stage: The stage at which defect was detected
whether E
When 100 is the * Example: Unit Testing, Code Review etc.
passed for function is
iPercentScore, including — Assigned to: The developer who has to remove this defect
(nFder?d“e 100 for — Type of defect: Type of defect tells about the nature of the defect
assigns 7' 1o finding the
2 101|Gosling_|grade Unit Testing__|John Do [Logical Error|Cading To be fixed|grade « Example: Coding Standards related, Logical Error
3 flir) !
4 103 m — Injected Stage: The stage of software life cycle where this defect might have been
10 4+ w\Sheet1 {Shest? / Shesta / al m 1 [l introduced
Ready
12/31/2013 ©BVRIT-VCAP 39 12/31/2013) ! . ©BVRIT-VCAP ! 40
— _Action Taken: To be fixed or fixed

atormg, wtormg,
| » e, | » e,

s

Code Review £ | Code Review fl [} ‘"§|
VISHNU T A VISHNU A N £
* A process where several people offer * Types:

— Self Code Review: The person who wrote code reviews his/her own code

constructive criticism of a Software Engineer’s

using the code review checklist. Defects are fixed as they are found

— Peer Code Review: The team member reviews the code written by another

Code W|th a VieW to Slmpllfy |t to make |t team member using the code review checklist
7
— Expert Code Review: Another person, who is an expert, reviews the code
more efﬁcient and to e“minate errors using the code review checklist. Defects are logged into a Defect Tracking
System, and tracked to closure. The person who wrote the code has to remove
12/31/2013 . .. OBVRIT-VCAP . P 12/3172013the defects from the code (nogtheReyigwer) 22
¢ | ocates or identifies potential bugs and failure

\nformg,,
%

b’ Pre-Requisites for Peer and
VISHNU Expert Code Review

¢
j
185, la_u\l"\'

Qg

The code has to meet these pre-requisites before it can be reviewed

Does the code build without any errors and warnings?

Has the developer unit tested the code?

Does the source file start with appropriate header and footer and
information?

— Isthe Code readable?

— Can the reviewer understand the code easily?

If the code does not meet any of the above

12/31/2013 ©BVRIT - vCAP
maontinnad nra racuicit it chauld ha cant

I wtermay,
P8 1

YISHNU

UNIVERSAL LEARNING

}
Bojup®

Qepithg,

Some exercises on Control structures

12/31/2013 ©BVRIT - vCAP 45

\nformg,,
%

> e
b S les :-
ot ome examples 7]

3Yif(iN==1)
printf(“iN is op-

Qertng,,

185, la_lu\\’“'

Prints
prints iN is not one

else
printf(“iN is not one”);

Prints
prints iN is one

4) if(iN=1)
printf(“iN is one”);

else Prints
iN1 is non-zero
printf(“iN1 is not-one”);
12/31/2013 ©BVRIT - vCAP 47

12/31/2013

\nformg,,
K o,

{0}

2

b Code Review Checklist

YISHNU

Qevertme,
450“_',,“9\'

Considers following points for review:

— Reviewing Comments and Coding Conventions

Reviewing Error Handling

Reviewing Control Structures

Reviewing Functions
Reviewing Code Performance Aspects

— Reviewing Math related aspects

12/31/2013 ©BVRIT-vCAP a4

forms,
s\ A
%)

N
b Some examples :-

YISHNU

UNIVERSAL JEARNING o

int iN1,iN2,iN3 ,iN =0;
iN1=1,iN2y=2,iN3=

}
Bojup®

gﬂ""ll!/,/

Prints
iN2 is larger

1) if(iN > iN
printf(“iN1 is larger”);

Prints
iN2 is larger

else
printf(“iN2 is

2) if(iN1 > iN2)
12/31/2013 © BVRIT - vCAP 46
nrintfl“iN1 ic lavraar’’).

aform,
I p ot

6)if(s) Prints
printf(“True’); prints true
else
printf(“false”);
7)if(0) Prints
printf(“True”); prints false
else
printf(“False”);
8) if(iN==3); Prints
else

printf(“false”);

[P . Prints

o 'fA('Nl;_l &f iN2 <) true as the expr evaluates to
printf(“True”); true T && T
else

printf(“false”);
10) if('4) not of a non zero value is
printf(“true”); zero hence false is printed

else
12/31534hEf(“false”); ©BVRIT - vCAP P

r ey,
T8 Nested if Statement g %)

192
VISHNU E &

<"An”if’ statement embedded within another ‘if’
statement is called as stad if within another ‘if’)

* Example:

if (iDuration > 6)

{
if (dPrincipalAmount > 25000)
{
printf (“Your percentage of incentive is 4%”);
}
else
{
printf (“Your percentage of incentive is 2%”);
}
}
else {
1231201PEint £ ("No incentivedhinrr-voar 49
t is the output of the following code sni %,
(1of5) Lo
visHNY Pl oA¢
int iNum = 2;
switch (iNum) {
case 1:
printf (“ONE”) ;
break;
case 2:
printf (“TWO”) ;
break;
case 3:
printf (“THREE”) ;
break;
default:
printf (“INVALID”) ;
break;

12/31/2013 ©BVRIT-VCAP 51
r . \Q\\ﬂ"'nu/%
18 What is the output of the 54\%
visunu following code snippet? (3 of 5) %‘,\ ,’5

switch (iDepartmentCode) {
case 110 :
printf (“HRD ”);
case 115 :
prAnEL(PIVS) 5 IVS E&R CCD

case 125 :
printf (“E&R ”);

case 135 :
printf (“CCD ”);

}
* Assume ‘iDepartmentCode’ is 115 and find the

12/31/2013 ©BVRIT-vCAP 53

12/31/2013

\\‘\W""’I.‘/%
@at is the output of the following code snjme,
3 jzzl
VISHNU z &

UIRESUIE = iNum % 2;
if (iResult = 0) {
printf ("The number is even");

}
else {
printf ("The number is odd"); The output is
} "The number is odd"

CASE 1: When iNum is 11

CASE 2: When iNum is 8 The output is

“The number is odd"

WHY?2?

12/31/2013 ©BVRIT-vCAP 50

t is the output of the following code snif %,
(2 0f 5) Lo
visHNy A S
int iNum = 2;
CHI
switch (iNum) {
default:
printf (“INVALID”);
case 1:
printf (“ONE”) ;
case 2:
printf (“TWO”) ;
break;
case 3:
printf (“THREE”) ;
}
12/31/2013 ©BVRIT-VCAP 52

t is the output of the following code snl@“ﬂz‘" %,
(4 0f 5) £,
JEsHNY 3 N
Q

Case 1.5: this is invalid

18, la_lll\l"\

/

int iNum = 2;
switch (iNum) {
case 1.5:
printf (“ONE AND HALF”);

because the values in

break; case statements must be

case 2: integers
printf (“TWO”);

case ‘A’
printf (“A character”);

12/31/2013 ©BVRIT-vCAP 54

output

atorms,
&V Yo,

b’ What is the output of the)(6\

visunu following code snippet? (5 of 5) % j

2

gartmg,

185, la_u\l"\'

unsigned int iCountOfItems = 5;
switch (iCountOfItems) {
case iCountOfItems >=10 :
printf (“Enough Stock”);
break;
default :

printf (“"Not enough
stock”);

break;

12/3}2013 ©BVRIT-vCAP 55

t is the output of the following code sni
(1 of 2)

%o,

o) —

qepertn,
Bojou®

YISHNU
UNIVERSAL LEARNING
unsigned short int iCount=3;
while (iCount) {
printf(“%u ”,iCount);

icount++;

The output will be “3 4 5 6.....” . After
reaching the maximum value which is
32767, the variable will take negative
values from -32768. The loop will terminate
only when ‘iCount’ becomes zero

VISHNU
YISHNY
int iNum;

t is the output of the following code sniwﬁ, s,
(10f2) Y- jo.,j

Qeper

int iCounter;
int iProduct;

for (iCounter=1; iCounter<= 3;
iCounter++) {
iProduct = iProduct *

R The output is a junk value -- WHY??2?
iCounter;

}

printf("%d"™, iProduct);

is’is because iProduct is not initialized

12/31/2013 ©BVRIT-vCAP 59

12/31/2013

atorms,
&V Yo,

b’ while Loop Control Structure (2 of 2)
VISHNU

)

Qevertme,
450“_',,“9\'

¢ Syntax:

while (condition) {

Set of statements;
}
Next Statement;

* Example:

unsigned int iCount = 1;

whi|le (i€bambove @odq snippet prints “1 2 3~
printf (“%d “,iCount);
iCount++;

12/31/2013 ©BVRIT-vCAP 56

Vﬁat is the output of the following code snippe#?.,
(M8 (20f2)
VISHNU

UNIVERSAL LEARNGSG

unsigned int

iCount = 1; | secauseorhs 5 |
while

(iCount<10);

| Does not display anything on the screen!!! |
printf ("%u",iC
o?n‘&i)splts in an infinite loop..
WHY?2?

qepthg,

-
©
bﬂau\l’“

12/31/2013 ©BVRIT - vCAP 58
t is the output of the following code sniw)
(2 of 2) H 3|
VISHNU E\ J;ﬁ
“FEE(CBUnt=0; iCount<10; iCount++) ;
{
printf ("%d\n", iCount) ;
} Have U observed this?
The output is 10
12/31/2013 ©BVRIT - vCAP 60

10

12/31/2013

r a\“\hrm;,/% . . . a\“\hrm,%’
b Nested Loops S P f;j at is the output of the following code sn;mej
xwl‘f HLEANNIEJL ‘ép 1;5 “VISHQNU 120 'ép& J‘%ﬁ
+“NAToop with in another loop is called as nested TRETIBGunterl=0;
int iCounter2;
|00p while (iCounterl < 3) {
for (iCounter2 = 0; iCounter2 < 5; iCounter2++)
* Example: (
hil flage=1 printf ("%d\t", iCounter2);
while (flag==1) { if (iCounter2 == 2)
for (iCount=1l;iCount<=10; iCount++) { {
statements; break;
} } Quits only the
} } innermost for loop
* The innermost for loop executes once for each printf("\n");
. . iCounterl = iCounterl + 1;
iteration of the outermost loop)
. 0 1 2 is printed 3 times
* Question: P
12/31/2013 . . . ©BVRIT - vCAP . 61 12/31/2013 ©BVRIT - vCAP 62
|? the iterations in the outermost loon is 3 and
o) ooy Vﬁat is the output of the following code snippe#?.,
tinuing the Loops - continue Statement 4 b s 3,
: 2 (10of 4) Lo
YISHNY BN 4 YISHNY BN 4
int iCount = 1;
* Example: do {
for (iCount = 0 ; iCount < ; iCount++) N N
(printf (“%d\t”,iCount);
if (iCount == 4) { iCount++;
continue; if (iCount == 5)
)
printf (“%d”, iCount); {
} continue; Output:1 23456789
}
. hile (iC t < 10);
The above code displays numbers from 1 to 9 } while(iCoun)
except 4.
12/31/2013 ©BVRIT - vCAP 63
Vﬁat is the output of the following code snippe ?f/% Vﬁat is the output of the following code snippg ?f/%
L (2 0f 4) oty [(3 0f4) Toty
VISHNY 3 N 4 YISHNY 3 N 4
int iCount; int iCount = 1;
for (iCount=1l;iCount <= 10; iCount++) { while (iCount < 10)
if (iCount % 2 == 0) { {
continue; if (iCount == 5)
} {
printf (“%d\t”, iCount); continue;
})
printf (“%d\t”,iCount);
iCount++;
}
Output:1 35 7 9 Output: 1 2 3 4 and then infinite loop

11

ipper?,

f the following code sni

Vﬁat is the output o
= (4 of 4)

VISHNU
int iCount, iValue;
for (iCount=1;iCount <= 5; iCount++)

}
A o, la_!l\l"\'

Qg

{
for (ivValue =1; iValue <= 3; iValue++)
{
if (ivalue == 2) {
break;

}
printf (“%d\t”,ivalue);

Output:1 1 1 1 1

12/31/2013

12

b Vishnu Career Advancement Program
VISHNU

UNIVERSAL LEARNING

C Programming Assignment
For the following assignments, write down the prototypes for the functions used

before writing the functions

1. Write a program to find nearest smaller prime number for a given Integer;

use a function to decide whether a number is prime or not.

2. Write a program that takes a positive integer as input and outputs the

Fibonacci sequence up to that number.

3. Write a program which to print the multiplication table from 1 to m for n

where m, n is the values entered by the user.

4. Write a program that will accept a string and character to search. The
program will call a function, which will search for the occurrence
position of the character in the string and return its position. Function

should return —1 if the character is not found in the input string.

5. Write a function, which prints a given number in words.

6. Write an program which will set the array element a[i] to 1 if i is prime,

and to 0 if 1 is not prime. Assume the array size to be 10000.

7. Write a program to count the number of vowels in a given string.

8. Write a program to obtain the transpose of a 4*4 array. The transpose is
obtained by exchanging the elements of each row with the elements of the

corresponding column.

Vishnu Career Advancement Program
VISHNU

UNIVERSAL LEARNING Assessment Question - 2

1. Write a program that takes an integer and displays the English name of that
value. You should support both positive and negative humbers, in the range
supported by a 32-bit integer (approximately -2 billion to 2 billion).

Examples:

1 1
: 10 -> ten :
: 121 -> one hundred twenty one :
1 1032 -> one thousand thirty two |
! 11043 -> eleven thousand forty three ,
: 1200000 -> one million two hundred thousand :

2. Write a program that determines the number of trailing zeros at the end of X! (X
factorial), where X is an arbitrary number. For instance, 5! is 120, so it has one
trailing zero. (How can you handle extremely values, such as 100!?) The input
format should be that the program asks the user to enter a number, minus the !.

3. Write a program that takes two arguments at the command line, both strings.
The program checks to see whether or not the second string is a substring of the
first (without using the substr -- or any other library -- function). One caveat:
any * in the second string can match zero or more characters in the first string,
so if the input were abcd and the substring were a*c, then it would count as a
substring. Also, include functionality to allow an asterisk to be taken literally if
preceded by a \, and a \ is taken literally except when preceding an asterisk.

4. Write a program that accepts a base ten (non-fractional) number at the
command line and outputs the binary representation of that number. Sample
input is

12/31/2013

atorms,
&\ s,

atorm,,
sowtormar, r

YISHNU

)
opoup>

Qg

C

)
opoup>

qeeertme,

Structures

C Programming - Level 3 and 4

Language

1 12/31/2013

12/31/2013

r i awtormag;, r awtormag;,
(18 Session Plan £ Py % (18 Structures (1 of 2) £ Py %
* Data used in real life is complex

* Structures

* Passing structures to functions as arguments * The primitive data types which are provided by all

* Pointer to structures programming languages are not adequate enough to handle

* Linked Lists

the complexities of real life data

Examples:

Date: A date is a combination of day of month, month and year
Address: Address of a person can consist of name, flat number, street, city, pin (zip) code and state

Account Details: Bank account information can contain the account number, customer 1D and Balance

3 12/31/2013

12/31/2013

b’ Declaring a Structure (1 of 4) _ \,\\G%
VISHNU p‘{ }

2

atorms,
&\ 4,

€,

0, wﬁ\

b’ Structures (2 of 2)

YISHNU

eQartm,
8,

)
opoup>

qeeertme,

* Astructure can be declared using the ‘struct’ keyword

* The set of variables that form the structure must be declared with a
valid name similar to declaring variables

* Each variable inside a structure can be of different data type

* Astructure is a set of interrelated data

« Astructure is a set of primitive data types which are related to
¢ Syntax:

business and are grouped together to form a new data type struct tag-name
«

. . . data-type member-1;

¢ Astructure is a mechanism provided by the language to create data-type member-2;

data-type member-n;
Y

custom and complex data types
» Astructure declaration ends with a semicolon

5 12/31/2013

12/31/2013

br Declaring a Structure (2 of 4) g %

E
VISHNU %,\01;:

* Date is a simple data structure, but not available
as a built-in data type

* A date has three components:
— day of month (integer, Range: 1-31)
— month (integer, Range: 1-12)
— vyear (integer, four digits)

12/31/2013 7

wtorms,
&V Yo,

br Declaring a Structure (4 of 4) }%\
VISHNU ‘s J

UNIVERSAL LEARNING

artm,
Qeb €
18, ”“,1\

« Astructure is generally declared globally above function ‘main’

* The member variables cannot be initialized within a structure declaration.

It will lead to compilation error if member variables are initialized with in

structure declaration

¢ The structure is allocated memory only after declaring a variable of type

structure

12/31/2013 9

wssing Member Variables of a Structure (2
of 3) H
ISHNU

dve: madn (int arge, char** argv) {
/* Declare two instances of date structure */

fepar
18, la_:u\l"\'

struct date sToday, sTomorrow;

/* Set 'day', 'month' and 'year' in instance sToday */
sToday.iDay = 08;

sToday.iMonth = 01;

sToday.iYear = 2009;

/* Set sTomorrow's date */

sTomorrow.iDay = 09;

sTomorrow.iMonth = 01;

sTomorrow.iYear = 2009;

12/31/2013 1

12/31/2013

atorms,
&V Yo,

br Declaring a Structure (3 of 4)

YISHNU

struct date {
short iDay;
short iMonth;
short iYear;

Y

}
18, la_ll\l"\'

QeeTtmg,

* Inthe above structure declaration, date is the tag-name

* Each variable declared inside a structure is known as a

‘member’ variable

* In the date structure, iDay, iMonth and iYear are member

variables
12/31/2013 8
. . aformg,
wssmg Member Variables of a Structure (g.w,,
of 3) 10
VISHNU :\ le?

"“tach member variable in a structure can be accessed individuglly

¢ Once a structure is declared, it can be used just like any primitive data
type

* Inorder to access the structure members, a variable of structure should
be created

* Example:
struct date sToday;

« To access individual members of the structure, the ’ operator is used

* Example:

sToday.iDay = 30;
sToday.iMonth = 4;

sToday.iYear = 2007;

12/31/2013 10

wssing Member Variables of a Structure @‘i%"”%
of 3) 20
VISHNU

/* Print the contents of the structure */

18, la_ll\l"\'

lpepart

printf ("Today's date is: %d-%d-%d\n",
sToday.iDay, sToday.iMonth, sToday.iYear);
printf ("Tomorrow's date is: %d-%d-%d\n",

sTomorrow.iDay, sTomorrow.iMonth, sTomorrow.iYear);

12/31/2013 12

atorms,
&V Yo,

br typedef Keyword (1 of 2)

YISHNU

}
18, la_ll\l"\'

Qg

* One type of data can be renamed with a
different name using the ‘typedef’ keyword

(typedef is a short form of ‘define type’)

* Astruct date had to be instantiated by using:

/* Create an instance of date structure */

12/31/2013 13

wtorms,
&V Yo,

€
“,1\

br Structures in Memory

VISHNU %\gﬁ

UNIVERSAL LEARNING

rtm,

* Astructure instance occupies memory space

* The amount of memory occupied by a
strgjctu(re is the sunaef sizes of all member

struct date
Va{hl*at if&t 213080 shortiDay;
short iMonth; Lay,
. Thgomm‘bers of a%¢ stdred in
. . . 2A3082 ;
)'contlguous Iocatlo%m short iMonth;
2A3084
struct date sToday; |::> 3085 i short iYear;
12/31/2013 15

& \v\hf"w/o

b’Structure within a Structure (2 of 3)
uVISHNU

IsAccount . iAccountNumber = 702984;

2
}
18, la_ll\l"\'

lhevartme,

sAccount.cAccountType = 'S';

sAccount .dBalance = 5000.0;

sA .acCust ="

/* Populating the date sturucture within the
accountdetails structure */

sAccount .sOpenDate.iDay = 1;

sAccount . sOpenDate. iMonth = 6;

sAccount .sOpenDate.iYear = 2005;

12/31/2013 17

12/31/2013

br typedef Keyword (2 of 2) 7 ¢

YISHNU

i le:
/1 gecaaEe‘Ehe structure date */

struct _date {
short iDay;
short iMonth;

short iYear;

}
18, la_ll\l"\'

QeeTtmg,

b

/* Define the structure ‘_date’ as a new data type
‘date’ */

typedef struct _date date;

/* Create an instance of date structure */
date sToday;

12/31/2013 14

awormay,
brStructure within a Structure (1 of 3)

VISHNL
fvypedef struct _accountdetails {

int iAccountNumber;

artm,
ep3rtme, 5
o 0up?>

char cAccountType;
char acCustomerName[10];
date sOpenDate;
double dBalance;
} accountdetails;

/* Declare an instance of accountdetails */
accountdetails sAccount;

12/31/2013 16
Wemory
" Address
typedef struct _accountdetails {
int iAccountNumber; 2A30A0
2A30A1
char cAccountType; .
Vpei 283082 nt
char acCustomerName[10]; 283083
date sOpenDate; 2A30A4 char cAccountType;
double dBalance; 2A30A5
}accountdetails; 2A30A6 20
2A30A7 R
2A30A8 28
accountdetails sAccount; |:"> 263080 ge
2A30AA g
2A30AB [
2A30AC H
2A30AD 2
2A30AE E
2A30AF N g
hort iDay;
5 s! 5
axomt H
2A30B2 B short iMonth;
g
Ed
2A3083 g
g iYear:
2A3084 ‘; L4 short iYear;
2A3085 Y
2A3086 a
23087 %
2A3088 °
2A30B9 g
2A30BA 3
2A30BB 2
12/31/2013 2A30BC & 18

r \wormay,
. & %
T8 Pointer to a Structure gf'\ﬂ
3 &
YISHNY Memory p‘g J;
Eypedef struct _date { Address
short iDay;
short iMonth; 2A3080
short iYear; A hort iDay
) e 2A3081
2A3082 roda
2A3083 stedsy
/* instance of date */ 2A3084
date sToday;
2A3085
/* date pointer! */
date* psToday;
/* Address of sToday
is p lated into
psToday */ 2A3090 00
psToday = &sToday; 2A3091 2A Tod
2A3002 30 pefoday
2A3003 30
12/31/2013 19

r \n‘“”"ir/

eading Structure Members using scanf
YISHNU
fint main (int argc, char** argv) {

date sToday;

printf (“Enter Today’s Date in format day month

Q)

e,
e

year”);
scanf (“$d%d%d”, &sToday.iDay, &sToday.iMonth,
sToday.iYear);
printf (“Today is %d-%d-%d”,
sToday.iDay, sToday.iMonth, sToday.iYear) ;
return 0;

12/31/2013 21

b’ o wiormay,
Linked Lists (2 of 4) £ %
07

* The linked list shown in below is a singly linked
list

(HIhls kind, of Ilnked 1|st aIIows """ Iy uni-

o] 5 ofo] 2228 o e] |

M8t node in the list

12/31/2013 23

12/31/2013

qwformay,
aessmg Member Variables using a Pomte‘;’)(‘\f'»EI
VISHNU ‘:‘,‘g §

* In order to access the members of a structure
using a pointer, -> (hyphen and greater than
symbol) operator is used

* Example:

date sToday, *psToday;
/* Assign the address of the structure variable to the
pointer */
psToday = &sToday;

/* Initialize the members of the structure using the
pointer */

12/aﬂaa°day->ma¥ 30; 20
iMaonth = 6.

\\n“’”"ir/,,

br Linked Lists (1 of 4) G
hALL L \ 1

* Alinked list is a versatile data structure used

pertm,
3
“,1\

to hold a collection of data

* Alinked list essentially consists of nodes

» Bgtht odq comprlses‘of data anc{ a"Pointer ™,
;‘;‘F:;’J: E JDM o J Data 1 SJ Data

ode . .
- The pointer in each node points to the next

Pointer to
next node

Pointer to
next node

Pomter to

Data next node

we@dement in the linked list ”

br J‘“\hm” e,
Linked Lists (3 of 4) £ e
YISHNY aAAe

* The advantage of a linked list is that insertion
and deletion is easier in contrast to an array
where insertion and deletion requires the
elements of the array to be moved down or
moved up which Sﬁqmre con5|derable amount

Data] PONErto ‘ Data Forter o

next node next node

. -
. > a [Jew novye aI|ne IS
requires setting[es[ms | omters
Ng de to be
* The node, after which the new node has to be
eeiserted, must be made to point to the new =

12/31/2013

a\\ﬂﬂ"rw/% R £ d Linked Li a‘““"m"/%

I . . N I ecap of Structures and Linked Lists N

b Linked Lists (4 of 4) £ © % b P 554\%
VISHNU ‘i\ J;i’ VISHNU ‘i\ J‘%?
RS tEane At UCture in C, is a set of primitive data types which are related to business and are

grouped together to form a new data type

* The structure members are accessed using the dot operator

ires simply changing the

* Deleting a node r%

po'p.te t R - Y J. € ne b * User defined data types can be created using typedef
ointer to Pointer to inter to Pointer to
l Datal oyt node A Data| ot node | DE"X:: node l Data| ost node NULL -
n / \ * Astructure can be embedded within another structure
-—
Node « Apointer can point to a structure

* Operator -> is used to access members of a structure using structure pointer

:)) . ' + Astruct b d o a function using eith be val by ref
- Linked list allows only sequential access. That is to search for the third structure canbe passed toa function using efther pass be value or pass by reference

node the traversal starts from the first node, then the second node and last * Afunction can return the structure variable to the calling function
the third node * Alinked list essentially consists of nodes
« An array allows random access. That is any element can be accessed by « Insertion and deletion is easier in a linked list
supplying its index « Linked lists allows only sequential access
12/31/2013 25 12/31/2013 26

b Vishnu Career Advancement Program
VISHNU

UNIVERSAL LEARNING

C Programming Assignment
Note: In all the below problems, use and define as many as functions as

possible.

1. Write a function, which checks whether one string is a sub-string of

another string.

2. Write a program that accepts a sentence and returns the sentence. With all the
extra spaces trimmed off. (In a sentence, words need to be separated by
only one space; if any two words are separated by more than one space,

remove extra spaces).

3. Write a program, which checks for duplicate string in an array of strings.

4. Write functions to insert and delete a string from an array of strings. Write a
program that displays a menu to the user.
a) Insert String
b) Delete Strings
¢) Exit
Depending on the user choice the program will call functions that will insert /

delete a string from an array of strings.

5. Write a program to print whether the number entered is a prime/odd use

functions.

6. Write a program that accepts input of a number of seconds , validates it and

outputs the equivalent number of hours ,minutes and seconds.

b Vishnu Career Advancement Program
VISHNU

UNIVERSAL LEARNING

C Programming Assignment
7. Write a program that can either add or multiply two fractions. The two

fractions and the operation to be performed are taken as input and the result

is displayed as output.

8. Write a recursive function to compute the factorial to a given number. Use
the function to write program which will generate a table of factorials of

numbers ranging from 1 to m where m is number entered by the user.

9. Write a program to implement student structure with following fields

(Name, Roll no, Age) Eg: (Ramu,15,21).

Vishnu Career Advancement Program

VISHNU

UNIVERSAL LEARNING Assessment Question - 3

1. Write the cleanest possible function you can think of to print a singly linked
list in reverse. The format for the node should be a struct containing an
integer value, val, and a next pointer to the following node.

2. Write a Program to reverse the complete linked list. The format for the node
should be a struct containing an integer value, val, and a next pointer to the
following node.

3. Write a program that, when run, will print out its source code. This source
code, in turn, should compile and print out itself. (Fun fact: a program that
prints itself is called a quine.)

4. Given an array of integers, the goal is to efficiently find the subarray that has
the greatest value when all of its elements are summed together. Note that
because some elements of the array may be negative, the problem is not
solved by simply picking the start and end elements of the array to be the
subarrray, and summing the entire array.

For example, given the array
